

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

1 @Test
2 public void primitivesShouldBeEqual() {

3 int i = 4;

4 int j = 4;

5 assertTrue(i == j);

6 }

1 @Test

2 public void StringShouldBeEqual() {

3 String hello1 = "Hello";

4 String hello2 = "Hello";

5 String hello3 = "H";

6 hello3 = hello3 + "ello";

7 System.out.println(hello3);

8 assertTrue(hello1.equals(hello3));

9 }

hashCode	and	equals	

This article is part of Marcus Biel’s free Java course focusing on clean code principles. It concludes a

series where we go over all the methods of the java.lang.Object class. Since hashCode and

equals are two of java.lang.Object’s methods which follow a contract that binds them together, it

makes sense to talk about both methods together. In fact, they are bound in such a way that we cannot

implement one without the other and expect to have a well-written class. Knowing all the details about

these two methods is essential to becoming a better Java programmer. So what do these two methods

do?

equals method

The equals method is used to compare two

objects for equality, similar to the equals

operator used for primitive values. In Listing 1,

we can see that CarTest will pass for

primitivesShouldBeEqual, since the

equality operator == inherently works for

primitives. The two primitive values i and j are

assigned respectively as follows, i = 4 and j = 4. Asserting with the equals operator succeeds and we

get a passing test, as expected.

In Listing 2, stringShouldBeEqual has two

distinct String reference variables, hello1 and

hello2, with two distinct “Hello” String

constants assigned to them. Before we talk about

equals, let’s look at what would happen if we

tried comparing these two Strings with the

equality operator which is used for primitive

values. hello1 == hello2 would return true

without needing to use the equals method at all.

This is because String values are optimized in the background for constants wherein there is actually

only one of them and both variables point to the same object in memory. The part of memory where

the variables hello1 and hello2 are stored is called a stack. On the other hand, the actual single

“Hello” object both variables point to is stored in another part of memory called the heap.

Going back to our equality operator scenario, things become a little more complicated as soon as we

add a new String variable where we initialize hello3 to “H” and re-assign hello3 to itself

concatenated with “ello”. hello1 == hello3 would evaluate to false. Printing them both out, we

would expect the hello1 == hello3 to evaluate to true. However, String has the same gotcha as

Listing 1

Listing 2

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

 1 public boolean equals(Object anObject) {

 2 if (this == anObject) {

 3 return true;
 4 }

 5 if (anObject instanceof String) {

 6 String anotherString = (String) anObject;

 7 int n = value.length;

 8 if (n == anotherString.value.length) {

 9 char v1[] = value;

10 char v2[] = anotherString.value;

11 int i = 0;

12 while (n-- != 0) {

13 if (v1[i] != v2[i]) return false;

14 i++;
15 }

16 return true;

17 }

18 }

19 return false;
20 }

Listing 4

1 @Test

2 public void porscheShouldBeEqual() {
3 Car myPorsche1 = new Car("Marcus", "Porsche", "silver");

4 Car myPorsche2 = new Car("Marcus", "Porsche", "silver");
5 myPorsche2 = myPorsche1;

6 assertTrue(myPorsche1.equals(myPorsche2));

7 }

Listing 3

do other objects, i.e. we should not use the equality operator on objects, including Strings. Instead,

we use the equals method as is shown on Listing 2, line 8.

String’s equals method

The String class has an equals

method as seen in Listing 3. First, it

checks if the equality operator works

for the two Strings being compared.

This is actually checking to see if both

variables share the same reference, i.e.

pointing to the same String in

memory – making it a performance

optimization.

Afterwards, it checks if the second

object is actually a String. This is

achieved with the instanceof

operator. instanceof safely casts the

object to a String so that we can

compare both of them. An

instanceof feature which many developers do not know about is that it includes a check for null. A

null object will never be a String and will never evaluate to true. Lastly, the method simply loops

through and compares each String’s characters for equality, returning true if and only if they are all

completely equal.

String is actually a subclass of Object and its equals method is overridden, making it work on

Strings like hello1 and hello3 from Listing 1 as expected.

User classes

Consider two instances

of a custom class Car in

Listing 4. It is an instance

of our Car class defined

in Listing 4 which

happens to be a silver

Porsche owned by

Marcus. Both instances seem to have exactly the same attributes, so we would expect them to be the

same car. Using the equals operator on them however returns false. It doesn’t work and the test fails

because we have two distinct instances.

Consider the simple case where myPorsche1 == myPorsche1, comparing myPorsche1 to itself. This

comparison returns true as the equality operator inherently returns true whenever we compare an

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

object to itself. Moving on to myPorsche1 == myPorsche2, it would seem that we would need to use

the equals method again. In fact, running the assertion fails our test. So we try using equals by

asserting myPorsche1.equals(myPorsche2) only to find ourselves greeted with a failing test result.

This was working so nicely for Strings, so why is it not working with Car?

If we closely follow the execution of our code, we would discover that we eventually end up in the

Object class because our Car class does not define and override its own equals method. What

actually ends up happening internally is a comparison by the object with itself. In our case,

myPorsche1.equals(myPorsche2) would only compare the reference variables themselves and not

the actual Car objects. This comparison would invariably return false simply because we have two

different reference variables. At any rate, it would be possible to make this true again if we were to

assign myPorsche2 to myPorsche1. This would make it so the object initialized to myPorsche2 no

longer has a variable pointing to it. This would also make both variables point to the object myPorsche1

was initialized to. Running the comparison yet again, we would then have a successful test run because

we would have compared the same object with itself again. Unfortunately, this is not what we want.

Instead, we want to compare both objects in a way that makes sense for our program.

Let’s have a look at the Car class.

Listing 5 shows a small simple class with a constructor, some attributes, and an equals method. Notice

that we do not have Car car as the parameter for our equals method. We cannot do this because of

Object’s original equals signature, so instead we want our parameter to be something like Object

obj. Later on we have to cast it to Car similar to what we saw earlier with the String class. Moreover,

it’s always a good idea to add the @Override annotation to ensure that we have properly overridden

the method. Our equals implementation is a stub that only returns false as a placeholder value

though, and we will eventually have to flesh out the details. It turns out however that implementing

equals is not so easy, so we will need to tackle some more theory before we continue.

 1 package com.marcusbiel.javacourse;

 2

 3 public class Car {

 4 private String owner;

 5 private String manufacturer;

 6 private String color;

 7

 8 public Car(String owner, String manufacturer, String color) {

 9 this.owner = owner;

10 this.manufacturer = manufacturer;
11 this.color = color;

12 }

13

14 @Override

15 public boolean equals(Object obj) {
16 return false;

17 }

18 }

Listing 5

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Design

Most of the time, developers just skip the design of

this method and simply click on “auto-generate”

which in many cases leads to severe bugs or at least

suboptimal performance. To implement equals

correctly, however, we have to define what makes

two Car instances equal in a way that makes sense

for the context of the program it is used in. Does it

make sense in its context for two cars to be equal

when they have the same manufacturer? When

they have the same manufacturer and color? The same engine? Or the same number of wheels? The

same top speed? The same vehicle identification number (VIN)? Based on the context, we have to

decide which set of fields can be used to identify an object and which fields to compare are redundant.

Additionally, for improved performance, we need to define the order in which we want to compare the

attributes. Are there any fields with a high chance of being unequal? Do some fields compare faster than

others? Implementing a meaningful equals method requires analysis of these aspects in great detail.

In this example, we assume that the car’s top speed

relates to the type of the engine in some form,

making it a redundant field which is not so helpful

for implementing equals – so we remove it. Let’s say

our cars always have four wheels in our example.

The number of wheels would not help us to

differentiate between cars. What about the VIN?

This would again depend on the type of program we

want to create. For the police, this is probably the only proper way of identification. But what about a

program the manufacturer uses? While the car is still being built, the VIN would probably be less

important. We just cannot make broad assumptions about how we tell between cars. This is something

that should be verified with the business people involved with the program. Based on what we gather

from them, we select attributes from our two Car instances to compare and in what order. In our

upcoming example, we are the business analyst and the developer as well, so we will just go ahead and

define two cars to be different when they have different VINs.

The equals contract

First of all, there are five conditions that our equals implementation have to comply with. These are all

actually pretty straightforward, so let’s go through some examples and see what they imply:

Reflexivity

“An object must be equal to itself.”

This implies that myOldCar.equals(myOldCar) should always return true. This is pretty trivial but it

is still important to make sure we test for it.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Symmetry

“Two objects must agree whether or not they are equal.”

If myOldCar.equals(someOtherCar) returns true, then so should

someOtherCar.equals(myOldCar). This also sounds pretty obvious when it fact it isn’t so when it

comes to inheritance. If you have a Car class and a BMW subclass of Car, it follows that all BMWs are

cars but not every car is a BMW. This makes the rule quite tricky to follow. Make sure to cover each

contract condition with a dedicated unit test to make sure the class stays fully compliant with the

contract.

Transitivity

“If one object is equal to a second, and the second to a third, the first must be equal to the third.”

This rule is actually more straightforward than it actually looks. For instance, let’s say we have three

cars: carA, carB and carC. If carA == carB, and carB == carC, then carA == carC.

Consistency

“If two objects are equal, they must remain equal for all time, unless one of them is changed.”

This implies that two objects should not be altered in any way by the equals method. So when you

repeatedly compare the same two objects with the equals method, it should always return the same

result.

Null returns false

“All objects must be unequal to null.”

This last rule is what Josh Bloch, author of Effective Java, calls “Non-nullity”. When given a null as an

equals method parameter, we should always return false and never throw a

NullPointerException.

Collections and Hashes
In Java, similar objects are

usually put into a

“collection” for processing.

Java collections are like

more powerful arrays, or

“arrays on steroids”!

Among other things, it

allows us to look up objects not only based on position, but also by their specific values. This is where

the equals method comes into play. To speed up the lookup, the creators of Java added specific hash-

based containers which use the hash value as a grouping mechanism to reduce the number of equal

comparisons needed. Ideally, objects considered unequal by equals will return different hash codes

which are used to group objects in “buckets”. In this ideal case, we will be able to find each object

simply by a lookup based on its hash value.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

However, there are “hash collisions” that come up

from two unequal objects sharing the same hash

code; in which case they end up in the same bucket.

If we are looking for, say, the instance dadsCar, we

have to look up the correct bucket based on the

hash code minus 391 that dadsCar will return.

With the hash collision however, we will have to do

an equals comparison on a list of two cars on top of

getting the hash codes.

The hashCode contract

Implementing hashCode comes with two rules. The first one being:

“For any two objects, return the same hash code when equals returns true.”

To achieve this, we use the same identifying attributes for both methods, in the same order. The second

condition is:

“When hashCode is invoked more than once and on the same object, it must consistently return the

same int value as long as the object is not changed.”

This rule is similar to the equals consistency rule introduced previously. Both equals and hashCode

methods must return consistent results.

To fulfill this contract you must overwrite hashCode whenever you overwrite equals and vice

versa. Also, when you add or remove attributes from your class you will have to adjust your equals and

hashCode methods. Last but not least, aim to return different hash codes when equals returns

false. Aiming to return different hash codes is not a hard and fast rule, but it will improve the

performance of your program by minimizing the number of hash collisions. Taken to its extreme,

the hashCode contract allows us to statically return a placeholder value such as 42 for all objects. As

Josh Bloch states in his book Effective Java however, this could result in quadratic rather than linear

execution time and therefore, could be the difference between working and not working.

The hashCode method is in fact a rather complicated beast. It is of such a level of complexity that

should there be new, vastly superior algorithms for hashing to a 32-bit integer as is the case with Java,

such a discovery would probably earn the highest honors and awards in computer science. Some of Josh

Bloch’s algorithms are some of the standards we use in Java for hashing as we will see in later examples.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Listing 6

 1 public class Car {

 2 private Vin vehicleIdentificationNumber;

 3 private Manufacturer manufacturer;

 4 private Engine engine;

 5 private Color color;

 6 private int numberOfWheels;

 7
 8 @Override

 9 public boolean equals(Object obj) {

10 if (this == obj)

11 return true;

12 if (obj == null)
13 return false;

14 if (getClass() != obj.getClass())
15 return false;

16

17 Car other = (Car) obj;
18

19 if (!manufacturer.equals(other.manufacturer))
20 return false;

21 if (!engine.equals(other.engine))

22 return false;

23 if (!color.equals(other.color))

24 return false;
25 return true;

26 }

27

28 @Override

29 public int hashCode() {...}
30 }

hashCode and equals implemented

equals

Both equals and

hashCode use

manufacturer, engine

and color in their

implementation. These

fields are arbitrarily chosen

as per the simulated design

phase in our theory

discussion because they

make sense for our business

scenarios. Consequently, we

disregard using other fields

like numberOfWheels and

VIN for the two methods.

Note that the order in which

they are compared is also

arbitrary.

For our scenario, we choose

to compare manufacturers

first, followed by engines,

and lastly by color. If we

compare two objects which

are not equal, we want to

leave the method as early as

possible because the earlier we leave, the faster the entire code will run. In our scenario, we know that

there is a plethora of manufacturers, so we can quickly return false for cars which are most likely to have

different manufacturers. For our example, engines are more likely to be equal as many manufacturers

use the same engines for many cars. Even though there are actually millions of colors, we make the

assumption that there are only so many paint jobs and finishes that cars can come in. This way, we avoid

the even higher probability of cars coming in the same color. What we end up having is a comparison

order where we optimize by starting from the most likely to be unequal to the least likely, i.e. comparing

manufacturers, then engines and lastly colors. Ideally, performance tests on actual sets of data will point

us towards the best implementation.

Lines 10-15 in Listing 6 come at the top for performance reasons as well. Firsly, we check if the object is

being compared to itself by comparing this to obj, as is shown on line 10. This can actually be

removed if we know that such a scenario would never happen. That being said, it is one of the cheaper

checks we can make. We then make a very important check for null on line 12, returning false when

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

1 @Override

2 public int hashCode() {

3 int result = 1;

4 result = 31 * result + manufacturer.hashCode();

5 result = 31 * result + engine.hashCode();
6 return 31 * result + color.hashCode();

7

Listing 7

passed it and fulfilling the last part of the equals contract. Doing so helps us avoid

NullPointerExceptions. Afterwards, we assert that we are comparing two Car instances. Failing

this, our cast would throw a ClassCastException. Now that we can cast obj to Car, we can

compare them by their private fields – which we can do because both are instances of the same class.

This allows us to easily say that engine.equals(other.engine), making the code much more

readable and shorter. For each pair of fields we compare, we can directly leave the method when they

are unequal. Only when we go through all the fields without returning false do we get to return

true. Note that we do not compare numberOfWheels as well as vehicleIdentificationNumber.

Firstly, this is because we have cars which always have four wheels in our example. Secondly, we could

have two physically identical cars, say both blue BMWs with the same engine, and we would still

consider them to be the same car in our program.

hashCode

We have learned so far that

implementing hashCode is

quite complex. In order to

understand the importance

of the 31 constant, we need

to go over a few details. 31 is

a prime number, can be

multiplied very quickly using shift and subtraction as follows: 31 * i == (i << 5) – i, and

according to research, it provides a better key distribution which minimizes the number of hash

collisions. In Listing 7, 31 is successively multiplied with the accumulated result, adding in the hash codes

of the three fields we used earlier for equals. All of this optimizes our code performance by minimizing

the collisions.

As you can see, the method is actually not doing much other than delegating the calculation of the hash

code to the other classes representing the parts of our car. Out of these three classes, let’s have a

detailed look into Engine to see how hashCode is implemented in further detail.

The Engine Class

 1 package com.marcusbiel.javacourse;

 2

 3 public class Engine {

 4 private long type;
 5 private String optionalField;

 6
 7 @Override

 8 public boolean equals(Object obj) {

 9 if (this == obj) return true;
10 if (obj == null) return false;

11 if (getClass() != obj.getClass()) return false;
12

13 Engine other = (Engine) obj;
14

15 if (type != other.type) return false;

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

16 if (optionalField == null)

17 if (other.optionalField != null) return false;

18 else if (!optionalField.equals(other.optionalField))

19 return false;
20

21 return true;

22 }

23

24 @Override
25 public int hashCode() {

26 int result = 1;
27 result = 31 * result + (int) (type ^ (type >>> 32));

28 return 31 * result

29 + ((optionalField == null) ? 0 : optionalField.hashCode());
30 }

31 }
Listing 8

Engine’s equals method is similar to that of Car’s, a notable difference being the check for null on

the optionalField. We have to do some slightly more complicated null checks on both objects’

optionalField variables to prevent any NullPointerException. With optional primitive fields

however, we do not need to check for nulls. We do not make these same assumptions on required fields

such as manufacturer, engine and color, so we also do not make null checks for them. Doing so

would clutter the code with “rocket code”, making it extra safe but messy.

As for hashCode, we convert the long field variable type into an int as shown on Listing 8 line 27.

Since longs have 64 bits and ints only have 32, we halve type somehow to minimize collisions. To

understand how this is accomplished, we need to look at (int) (type ^ (type >>> 32)). First, we do

a bitwise shift with the operator >>> on type over 32 bits. This moves the first 32 bits of type over to

its last 32 bits. Second, we do an

“exclusive or” or “xor” with the ^

operator which effectively

preserves and merges some of the

information from the two halves of

type, ensuring that we minimize

collisions when we finally downcast

our long type to an int. Note

that this is the current standard for

hashing long fields. We do roughly

the same routine as with Car’s

hashCode and accumulate the

resulting hash.

someClass

Listing 9 shows a special example

which illustrates hashCode

implementation with primitive

Listing 9

 1 @Override

 2 public int hashCode() {

 3 int result = 0;

 4 result = 31 * result + myByte;

 5 result = 31 * result + myShort;

 6 result = 31 * result + myInt;

 7

 8 result = 31 * result

 9 + (int) (myLong ^ (myLong >>> 32));

10 result = 31 * result

11 + Float.floatToIntBits(myFloat);

12

13 long temp = Double.doubleToLongBits(myDouble);
14 result = 31 * result

15 + (int) (temp ^ (temp >>> 32));

16
17 result = 31 * result

18 + (myBoolean ? 1231 : 1237);
19 result = 31 * result + myChar;

20 return 31 * result + myString.hashCode();

21 }

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

 1 @Override

 2 public boolean equals(Object obj) {
 3 if (this == obj)

 4 return true;
 5 if (obj == null)

 6 return false;

 7 if (getClass() != obj.getClass())
 8 return false;

 9
10 SomeClass other = (SomeClass) obj;

11
12 if (myByte != other.myByte)

13 return false;

14 if (myShort != other.myShort)
15 return false;

16 if (myInt != other.myInt)
17 return false;

18 if (myLong != other.myLong)

19 return false;

20 if (Float.floatToIntBits(myFloat) !=

21 Float.floatToIntBits(other.myFloat))
22 return false;

23 if (Double.doubleToLongBits(myDouble) !=

24 Double.doubleToLongBits(other.myDouble))

25 return false;

26 if (myBoolean != other.myBoolean)

27 return false;

28 if (myChar != other.myChar)

29 return false;

30 return myString.equals(other.myString);

31 }

Listing 10

types in more detail. We see the same standard long field hashing being used. Floats are handled

differently in that they are converted to integer bits with a native helper function before being

accumulated into the hash. Double, having the same length as a long, is converted to a long with a

native helper function with the long being converted back and accumulated into the integer result.

Lines 17-18 look very different as they use some special syntax and two specifically chosen prime

constants, namely 1231 and 1237. Line 18 uses the ternary operator “?:” which works in a similar way

to an if-else statement, except that it is an expression that evaluates to a boolean. In this case, you

have myBoolean as the if condition where if true would return 1231, else which returns 1237. As for

1231 and 1237, these numbers are chosen for being large primes that minimize the number of hash

collisions. Lastly, char is basically a smaller integer number type, so it is trivial to accumulate it into the

hash.

equals

For primitive values, we simply use

the equality operator. We start with

the smallest possible values because

checking them has the highest chance

of making the code run faster across

multiple runs, i.e. we go from byte,

to short, to int, to long and so on.

Floating types are a little more

complex to compare. float and

double have to be converted to int

and long respectively before we

compare them. booleans are trivial

to compare, and we could have

placed them at the top for better

performance.

Thorough business analysis can reveal

even better ways to arrange these

fields for performance. Again,

performance tests on live data are

ultimately the best ways to eke out

the fastest possible runtimes when

needed. Of course, all of these

optimization techniques would only

be useful if performance were an

issue. Otherwise, the comparison

order probably doesn’t matter anyway.

