

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

LinkedList	vs	ArrayList	

The Java Collections Framework has two general-purpose classes for representing lists of things, namely

LinkedList and ArrayList. In a previous article, we covered the LinkedList data structure. As the

name implies, LinkedList gets its name from being internally based off a doubly-linked list.

Linked lists and java.util.LinkedList

Linked lists and java.util.LinkedLists actually represent two different concepts. As an analogy,

think of the difference between the abstract concept of a car on paper and a real BMW.

A linked list is an abstract concept of a data structure, independent of any programming language or

platform, whereas the LinkedList Java class is a concrete implementation. Among other interfaces,

LinkedList implements java.util.List. You can have duplicates in a List and you can go

through each element in the same order as inserted.

Differences between ArrayList and LinkedList

As was covered in a previous article, both ArrayList and LinkedList implement the

java.util.List interface, making them somewhat similar to each other, but that is where the

similarity ends. First of all, ArrayList is based on raw Java arrays, while LinkedList is based on a

doubly-linked list.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

In contrast to an ArrayList, LinkedList’s doubly-linked list allows more efficient insertions and

removals of elements at any position within the list. Therefore, we prefer LinkedList over

ArrayList whenever our main use of the list is to add and remove elements in random positions.

Otherwise, ArrayList might be a better choice as storing elements in an array consumes less memory

and generally offers faster access times. Besides implementing List, LinkedList also implements

the Queue and Deque interfaces, giving it some additional functionality over ArrayList.

In conclusion, there is no overall winner between ArrayList and LinkedList. Your specific

requirements will determine which class to use.

LinkedList Implementation

Figure 1 shows a simplified code excerpt from the java.util.LinkedList class. A full grasp of every

detail of the code excerpt is not needed. All that there is to it is to show that LinkedList is a normal

Java class which anyone could have written, given enough time and knowledge. The full, actual source

code is available online. After reading this article, having a look at it yourself is recommended. As is

shown, LinkedList implements the List, Queue and Deque interfaces, as Deque extends Queue.

Next, we can see that LinkedList class has a reference to the first and the last elements of the list.

Finally, we can also see that the class has functions such as get, add or remove – to access, insert or

delete elements from the list.

As we just have just seen in the code, LinkedList’s references to its first and its last elements are also

shown as red arrows in Figure 2:

Figure 2

package java.util;

public class LinkedList implements List,Deque {

 private Node first;
 private Node last;

 public E get(int index) {…}
 public boolean add(E e) {…}
 public E remove(int index) {…}

 […]
}

Figure 1

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Every single element in a doubly-linked list has a reference to its previous and next elements as well as a

reference to an item, simplified as a number within a yellow box in Figure 2.

A code excerpt of a linked list node implementation is shown on Figure 3. It has private members for the

item it holds, as well as for the previous and the next nodes in the list. As users of the Collections class

LinkedList, we never directly access the nodes. Instead, we use the public methods LinkedList

exposes which internally operate on the private Node members.

Having already covered the methods of the List interface in a previous article, we move on now to the

methods of the Queue interface as implemented by LinkedList.

Queue

From a high-level perspective, the Queue interface consists of three simple operations: add an element

to the end of the Queue, retrieve an element from the front of the Queue without removing it, and

retrieve and remove an element from the front of the Queue.

In the lifetime of a queue, there are special situations like trying to remove an element from an empty

queue or trying to add an element to a full, limited-capacity queue.

Depending on your specific implementation, this might be a fairly common situation. In this case, you

will need a method that returns null or false. Alternatively, this might be an exceptional situation which

requires you to have a method that throws an Exception. To this end, the Queue interface offers each of

its operations in two flavors – one method that throws an Exception and another that returns a special

value in certain cases as is shown in Figure 4.

public class Node {
 private E item;

 private Node previous;
 private Node next;

 public Node(E element, Node previous, Node next) {
 this.item = element;

 this.next = next;

 this.previous = previous;
 }

 […]
}

Figure 3

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Figure 4

A Queue allows adding elements to its tail end.

In the case where add throws an Exception when the queue is full, offer returns false. LinkedList, like

most Queue implementations, has a virtually unlimited capacity, so it will almost never be full.

ArrayBlockingQueue on the other hand is one such queue implementation with a limited capacity.

Next up are element and peek. Both allow you to retrieve an element from the front of the queue

without removing it. If the queue is empty, element throws an Exception while peek returns false.

Finally, you can retrieve and remove an element from the front of the queue. If a queue is empty,

remove throws an Exception while pollreturns false.

Now we will look at some methods from the Deque interface as implemented by LinkedList. Deque

is short for “double-ended queue”, making it a queue that can be accessed from either end. Just like a

queue, a deque allows adding, retrieving, and retrieving and removing an element. However, since it

can be accessed from either end, the Queue methods we saw before now exist in two variations – one

for the first and one for the last element of the deque, as shown in Figure 5.

Figure 5

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Again, let’s look at this in more detail. You can add elements to both ends of the Deque. Just like the

add method of the Queue interface, addFirst and addLast will throw an Exception when the

Deque is full. offerFirst and offerLast will return false instead of throwing an Exception. Do

keep in mind that LinkedList has an unlimited capacity so it will never get full.

LinkedBlockingDeque on the other hand is a Deque implementation that may have a limited

capacity.

You can retrieve elements from both ends of the Deque without removing them. getFirst and

getLast throws an Exception when the queue is empty while peekFirst and peekLast returns

false in this case. Finally, you can retrieve and remove elements from both ends of the Deque.

removeFirst and removeLast throw an Exception when the queue is empty while pollFirst and

pollLast return false in this case.

Stack

The Deque interface also supports methods of the Stack

data structure, namely push, peek and pop. This allows us

to use java.util.LinkedList as a Stack.

A stack is a very simple data structure that can only be

accessed from the top. As an analogy, think of a stack of

books:

push adds an element to the top of the stack, equivalent to

the addFirst method. peek retrieves but does not remove

an element from the top of the stack, just like the

peekFirst method. pop retrieves and removes an

element from the top of the stack, same with the

removeFirst method.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Deque<String> deque = new LinkedList<>();

deque.add("1");

deque.add("2");
deque.add("3"); // deque: [1, 2, 3]

Queue<String> queue = new LinkedList<>();
queue.add("1");

queue.add("2");

queue.add("3"); // queue: [1, 2, 3]

Deque<String> deque = new LinkedList<>();
deque.addLast("1");

deque.addLast("2");
deque.addLast("3"); // deque: [1, 2, 3]

Deque<String> deque = new LinkedList<>();
deque.addFirst("1");
deque.addFirst("2");

deque.addFirst("3"); // deque: [3, 2, 1]

Deque<String> deque = new LinkedList<>();
deque.add("1");

deque.addLast("2");
deque.addFirst("3"); // deque: [3, 1, 2]

Code Examples

We will be looking at some code snippets with a LinkedList instance. At this point, it should be

mentioned that we have to import classes like java.util.Deque, java.util.LinkedList and

java.util.concurrent.LinkedBlockingQueue to compile these snippets.

Adding to Deques and Queues

add, addLast, and addFirst

First off is a Deque reference variable,

deque. Note the use of the diamond

operator, <>, introduced with Java 7.

The operator spares us the trouble of

writing String again to the right of

LinkedList. Also note the use of the

Deque interface on line 1. This makes it

so that we only get to use the methods

of LinkedList which implement

Deque. Since LinkedList implements

other interfaces like the Collection and

List interfaces, you might also want to

review ArrayList which also

implements them, by going over to our

previous article on it. Going back to our

example, calling deque.add on strings “1”, “2” and “3” gives us a Deque that contains the elements

[1, 2, 3] in that order.

Replacing deque with the Queue reference variable, queue, gives us the same outcome. Turning our

Queue back into a Deque, we get to use addLast to add elements to the end of deque. Sure enough,

we get the same outcome as in the previous two examples.

Starting over with an empty deque, we

can use addFirst to add elements in

reverse order to addLast, giving us 3,

2, 1. We can mix it up by using both

addFirst and addLast in one place, but

this can get really confusing so we

should try to avoid doing so.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

Deque<String> deque = new
LinkedBlockingQueue<>(2);

deque.offer("1");
deque.offerFirst("2");

boolean wasAdded = deque.offerLast("3");

// wasAdded: false
// deque: [1, 2]

Deque<String> deque = new LinkedBlockingQueue<>(2);
deque.offer("1");

deque.offerFirst("2");

deque.add("3"); // throws IllegalStateException

Deque<String> deque = new LinkedList<>();
deque.add("1");

deque.add("2");
deque.add("3");

String element = deque.element(); // element: 1
// deque: [1, 2, 3]

offer, offerFirst and offerLast

Analogous to the three add methods,

we have three offer methods which

don’t differ so much from the former

when it comes to LinkedLists. With

LinkedBlockingDeque however,

because we can limit the maximum

number of elements in the queue,

adding one over the maximum, we would expect something to happen. As it turns out, the offer group

of methods would just return a boolean indicating whether the element was accepted or not. In the

case where we add another element to a full deque, our offer methods would return false.

What happens if instead

we use an add method on

a full

LinkedBlockingDeque?

Our program would

actually throw an IllegalStateException. In normal circumstances, the same exception is not

thrown with a LinkedList as it is a virtually unlimited Queue and Deque implementation.

On a final note, another difference between the add and offer methods is that add returns void while

offer returns a boolean. This is probably a minor difference, because it would only matter when a

Queue or Deque implementation has a limited capacity.

Reading from Deques and Queues

element

A general-purpose function for

reading from deques and queues

is element. As our snippet

shows, we always retrieve the

leftmost element and no

elements are removed from

deque afterwards.

As for explicitly retrieving an element from the front or the back of our deque, we actually use

getFirst and getLast.

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

getFirst and getLast

To explicitly retrieve an element from the front of a deque, we use getFirst. In our case, it works

exactly the same as element from our last example.

Conversely, we use getLast to explicitly retrieve an element from the back of a deque.

peekFirst and peekLast

As with add and offer, the methods for reading from a deque are very similar. The difference shows

with an empty deque or queue.

With element, getFirst and getLast, an empty deque gets us a NoSuchElementException.

The question now becomes which methods to use for which cases. Whenever we expect to read off an

empty deque, we would probably go for peek methods. For limited deques and queues, we would

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.add("2");

deque.add("3");

String first = deque.getFirst(); // first: 1

// deque: [1, 2, 3]

Deque<String> deque = new LinkedList<>();
deque.add("1");

deque.add("2");

deque.add("3");

String last = deque.getLast(); // last = 3

// deque: [1, 2, 3]

Deque<String> deque = new LinkedList<>();
String first = deque.peekFirst(); // first = null

// deque: []

Deque<String> deque = new LinkedList<>();

String last = deque.peekLast(); // last = null

// deque: []

Deque<String> deque = new LinkedList<>();
String element = deque.element(); // throws NoSuchElementException

Deque<String> deque = new LinkedList<>();

String element = deque.getFirst(); // throws NoSuchElementException

Deque<String> deque = new LinkedList<>();

String element = deque.getLast(); // throws NoSuchElementException

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

probably use the offer methods. Conversely, when we consider not being able to add to deques or

queues an exceptional case, we would use the add methods. The Queue and Deque interface is quite

flexible, providing us with different types of behaviors.

Removing from Deques and Queues

Starting with empty deques, removing from them causes our code to throw a

NoSuchElementException.

Using poll instead, we get null as its return value. The same is true for pollFirst and pollLast.

Of course, the remove and poll methods work similarly to the previous methods, as expected.

In the example above, note that since a LinkedList allows duplicates, we could have added, say 1,

three times. We purposely added 1, 2, and 3 so we actually see which element was removed.

removeFirst retrieves and removes the leftmost element and so too for the rightmost element with

removeLast.

Stack

Lastly, we cover stacks and how they relate to the previous topics. The methods that define stack

behavior are actually also part of the Deque interface. In fact, there is no Stack interface. There is a

Stack class which extends Vector but as per an earlier article, the Vector class is to be avoided,

which means that Stack should be avoided too. Being 20 years old, the performance side is quite

suboptimal. We can use something as simple as an array or an ArrayList of course, but instead we

will look into Deque’s stack methods.

Deque<String> deque = new LinkedList<>();
deque.remove(); // throws NoSuchElementException

Deque<String> deque = new LinkedList<>();
String element = deque.poll(); // element = null
element = deque.pollFirst(); // element = null

element = deque.pollLast(); // element = null

Deque<String> deque = new LinkedList<>();

deque.add("1");
deque.add("2");
deque.add("3");

String first = deque.removeFirst(); // first = 1, deque: [2, 3]

String last = deque.removeLast(); // last = 3, deque: [2]
String element = deque.remove(); // element = 2, deque: []

© 2016, Marcus Biel, Software Craftsman

http://www.marcus-biel.com/

To add an element to a stack, we call the method push. Since stacks are first-in, last-out data structures,

when we add, say “redbook” and then “brownbook” to our stack, we can think of the brown book

being on top of the red one.

If we want to just retrieve or remove a book, the brown book gets taken because we can only do things

to the top of a stack. In our case, “brownBook” is what stack.peek() returns as the top element.

Note that LinkedList stores the elements starting from top to bottom in a way in which when printed

out would appear from left to right.

Afterwards, we pop elements off the stack one by one and see that “brownBook” is the first to be

taken out, reducing the stack’s size to one, followed by “redBook”, making the stack empty. Finally,

removing yet again, this time from an empty stack, would cause our code to throw a

NoSuchElementException.

Finally, if we instead called peek on an empty stack, we would be returned a null value for top with

no exception thrown. The stack remains empty all the same.

Deque<String> stack = new LinkedList<>();
stack.push("redBook");

stack.push("brownBook"); // stack: [brownBook, redBook]

String top = stack.peek(); // top: brownBook, stack: [brownBook, redBook]

top = stack.pop(); // top = brownBook, stack: [redBook]
top = stack.pop(); // top = redBook, stack: []
stack.pop(); // throws NoSuchElementException

Deque<String> stack = new LinkedList<>();
String top = stack.peek(); // top = null, stack: []

