

public void travelMaxDistance(Car car) {
 double maxDistance = car.getLitersOfFuel() * car.getMilesPerLiter();
 car.setLitersOfFuel(0);
 System.out.println("Car has traveled a distance of " + maxDistance + "
miles.");
}

Getters and Setters are Evil

Introduction

Since I started programming in Java in 2001, I have read so much about encapsulation. The

Internet has become replete with Java articles and lessons teaching the basics of encapsulation

in the form of declaring some class with private fields and public getters and setters.

Typical Examples of Encapsulation

Many Java books would show something like this to demonstrate encapsulation:

public class Car {
 private double gallonsOfFuel;
 private double milesPerGallon;

 public void setGallonsOfFuel(double gallonsOfFuel) {
 this.gallonsOfFuel = gallonsOfFuel;
 }
 public double getGallonsOfFuel() {
 return gallonssOfFuel;
 }
 public void setMilesPerGallon(double milesPerGallon) {
 this.milesPerGallon = milesPerGallon;
 }
 public double getMilesPerGallon() {
 return gallonsOfFuel;
 }
}

Example 1

As many such introductory articles posit, since gallonsOfFuel is private, you need to add

some additional logic like decreasing gallonsOfFuel by some amount every time

getGallonsOfFuel() is called. This would then be considered a well-encapsulated Car

class, i.e., the client would have to minimally change any code in other classes if functionality in

the Car class was changed. However, this is not the case. Take a look at the

travelMaxDistance() function below. Just how much better is the example with getters and

setters (Example 2) than one using public fields (Example 3)?

public class CarService {
 public void travelMaxDistance(Car car) {
 System.out.println(“Car traveled “ + maxDistance(car) + “ miles.”);
 }
 private double maxDistance(Car car) {
 return car.getGallonsOfFuel() * car.getMilesPerGallon();
 }
}

Example 2

public class CarService {
 public void travelMaxDistance(Car car) {
 System.out.println(“Car traveled “ + maxDistance(car) + “ miles.”);
 }
 private double maxDistance(Car car) {
 return car.gallonsOfFuel * car.milesPerGallon;
 }
}

Example 3

As you can hopefully see, it isn’t any better at all! If you are trying to code in an object-oriented

manner, as you should when using the Java language, you shouldn’t be violating encapsulation.

Both of these examples violate encapsulation heavily and Example 2 represents what Martin

Fowler calls an Anemic Domain Model.

Getters and Setters Are Evil

In my opinion, modern development environments have made the misuse of getters and setters

all too easy by introducing automated getter and setter generation. When people start learning

programming, they often find themselves introduced to auto-generated getters and setters in

their IDE. One click, and people think their class is done and follows encapsulation rules when

in fact it couldn’t be any farther from the truth. Just because you have the power to create

getters and setters with a single click, doesn’t mean you’re wielding your power wisely.

In cases where you are modelling some complex business behavior between objects, try to

avoid automated code generation, especially getter and setter generation, as much as possible.

Design your entities by adding public attributes only when needed. View your entities from the

perspective of its clients. Methodologies like test-driven development easily allow the design of

classes with a focus on how a client can use the code - with tests driving and verifying the

design. The misuse of automatic getter and setter generation is often a symptom of a poor

design - often resulting in monolithic, unmanageable “spaghetti code”.

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.martinfowler.com%2Fbliki%2FAnemicDomainModel.html&ei=__GwVI69JomAywPXxYHoCQ&usg=AFQjCNFOo8hTDmSWx9NGxbhu4XpTRbJBhw&bvm=bv.83339334,d.bGQ

Proper Encapsulation

What methods would a client of your class need? Would a client be interested in the

relationship between fuel and miles per gallon? If so, design for it. Make it as easy as

possible for a possible client of your entity. Provide the fewest possible public methods your

client needs. Do the work for your client internally. Don’t force your client to get his hands

dirty. A real-world analogy would be a counter at a restaurant. You as a customer shouldn’t

need to (and in many cases aren’t allowed to) know how your order is handled, only that the

food comes out right. This is, roughly speaking, how encapsulation is supposed to play out. If a

client was getting his hands dirty and preparing the meal himself, what would be the point of the

restaurant? Think of your code in the same way.

As much as possible, try not to return raw data as directly stored in your entities’ private

fields. Always try to add some value for your clients. As an example, given that calling

travelMaxDistance() uses all of our Car class’ private fields, why not move the logic to

the Car class so that clients would not need to know how our Car stores fuel and miles per

gallon data? Doing so would have the net effect of reducing the amount of Car’s public

methods, which would make it easier to make changes to the car class. A smaller, more

meaningful number of public methods is always preferable to multiple public methods. To this

end, we could move our calculation of the maximum travel distance to our Car class itself:

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

public class Car {
 private double gallonsOfFuel;
 private double milesPerGallon;

 public Car(double gallonsOfFuel, double milesPerGallon) {
 this.gallonsOfFuel = gallonsOfFuel;
 this.milesPerGallon = milesPerGallon;
 }

 public double maxDistance() {
 return gallonsOfFuel * milesPerGallon;
 }
}

Example 4

We could then easily rewrite our CarService class’s previous travelMaxDistance()

method as follows:

public void travelMaxDistance(Car car) {
 System.out.println(“Car traveled “ + car.maxDistance() + “ miles.”);
}

Example 5

Note that the code now reads better as it clearly speaks the language of the business and

solves their problem more precisely.

If you go back and look at the original code in Example 1 and Example 2 it is much less precise.

The Car class was cluttered with simple but unnecessary code that has to be understood and

maintained for no reason. You might question my changes in Example 4 since you might not

think they are necessary for such a small code sample, but even there it makes our code more

clear and precise and lets us see the actual important aspects of the code more easily.

As a final note, I’d like to highlight that we didn’t add the “get” prefix to our maxDistance

identifier as it decreases the readability of our code and shifts the code from an Object Oriented

Design to a more procedural machine-like model.

These tiny changes, when applied rigorously to all your entities, will radically improve the

readability and usability of your code. For an extensive guide that extends many of the points

that a briefly talked about in this article, I would suggest reading up on Eric Evans’ Domain-

Driven Design: Tackling Complexity in the Heart of Software.

Thanks for reading!

https://cleancodeacademy.com/
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=marcusbiel-20&linkId=Q5GO7XFZOQALSNEF
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=marcusbiel-20&linkId=Q5GO7XFZOQALSNEF
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=marcusbiel-20&linkId=Q5GO7XFZOQALSNEF
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=marcusbiel-20&linkId=Q5GO7XFZOQALSNEF

