

The Object clone() Method

Introduction

In this article from my free Java 8 course, I will be discussing the Java Object clone() method.

The clone() method is defined in class Object which is the superclass of all classes. The

method can be used on any object, but generally, it is not advisable to use this method.

The clone() Method

The clone() method, as the name implies, creates an identical copy of an object. Depending

on the type of implementation, this copy can either be a shallow or a deep copy. In any case,

the objects will be equal, but not identical (For more details see my article about Identity and

Equality in Java).

Using clone() on an Object

Let’s take a look at how the clone() method works. In Example 1 we create an object of class

Porsche named marcusPorsche, giving me a very nice new car. However, I’m a nice guy and

I’d like to give away another Porsche; so I’ll clone the marcusPorsche object and assign the

new object to the reference variable peterPorsche. If your name is Peter, congratulations!

You just got a new Porsche!

package com.marcusbiel.java8course;

public class PorscheTest {

 @Test
 public void shouldClonePorsche(){
 Porsche marcusPorsche = new Porsche();
 Porsche peterPorsche = porsche.clone();
 assertNotSame(porsche, peterPorsche);
 }
}

Example 1

http://www.marcus-biel.com/shallow-vs-deep-copy-video-tutorial/
http://www.marcus-biel.com/identity-and-equality-in-java-video/
http://www.marcus-biel.com/identity-and-equality-in-java-video/

However, something is still wrong. The clone() method is red. The problem is that the

clone() method from class is Object protected. Every object can call protected methods

inherited from the Object class on itself. However, it can never call such a method on other

objects. While clone() is accessible to both our Porsche class and our PorscheTest class,

the PorscheTest can never call the inherited clone() method of a Porsche object.

To fix this problem, we have to override the clone() method in the Porsche class and increase

its visibility. First, we change the access modifier of the clone() method to public and

change the method return type from Object to Porsche, which makes our code clearer since

we don’t have to cast cloned objects into Porsches. To implement the clone method, we call

super.clone(). The super keyword means that we are calling a method from a superclass,

which in this case is the Object class.

Note also that the clone method of the Object class is declaring a checked

CloneNotSupportedException, so we have to decide whether we want to declare it or

handle it. Declaring a CloneNotSupportedException while implementing (supporting) the

clone() method is contradictory. Therefore, you should omit it. All possible error situations are

serious errors, so the best you can possibly do is to throw an Error instead.

package com.marcusbiel.java8course;

public class Porsche implements Car {

 @Override

 public Porsche clone(){

 try{

 return(Porsche)super.clone();

 } catch(CloneNotSupportedException e){

 throw new AssertionError(); /* can never happen */

 }

 }
}

Example 2

However, when we run the above code, we encounter another issue: a

CloneNotSupportedException. To correct that, we have to implement the Cloneable

interface. The Cloneable interface does not contain any methods, it is a Marker Interface - an

empty interface used to mark some property of the class that implements it.

public class Porsche implements Car, Cloneable{

Example 3

Now when we run the test in Example 1, it passes successfully.

Modifying an Object after clone()

At this point, we’re going to add a test to check the content of the new object. We want to verify

that our owner has been correctly identified in each object. The asString() method will be

used to return a String representation of our Porsche object. The expected result when we

are finished is for the object to be “Porsche of Peter”. First, I’m going to create the

asString() method in our Porsche class and an owner attribute.

String ownerName;

[...]

public String asString(){
 return “Porsche of” + ownerName;
}

Example 4

In the code below, the assertEquals() function is used to compare the output of the

asString() function. When we run the test, it will fail, as the owner of both Porsches is still

“Marcus”.

@Test
public void shouldClonePorsche(){
 Porsche marcusPorsche = new Porsche(“Marcus”);
 Porsche peterPorsche = porsche.clone();
 assertNotSame(porsche, peterPorsche);

 assertEquals(“Porsche of Peter”, peterPorsche.asString());
}

Example 5

To fix this test, we need to create a method for transferring ownership of the car. I’m going to

call this method sellTo().

public void sellTo(String newOwnerName){
 ownerName = newOwnerName;
}

Example 6

Now I will call the sellTo() method on the cloned Porsche object, to transfer ownership of the

cloned Porsche to Peter. As a final proof that cloning the Porsche object created a fully

independent second Porsche object, I will test that transferring the ownership to Peter on our

cloned Porsche object did not influence the original Porsche object. In other words, I will test

whether the original Porsche object still belongs to Marcus or not.

@Test
public void shouldClonePorsche(){
 Porsche marcusPorsche = new Porsche(“Marcus”);
 Porsche peterPorsche = porsche.clone();
 assertNotSame(porsche, peterPorsche);

 peterPorsche.sellTo(“Peter”);
 assertEquals(“Porsche of Marcus”, porsche.asString());
 assertEquals(“Porsche of Peter”, peterPorsche.asString());
}

Example 7

This time, when we run the test, it will pass. This proves that we have created two independent

objects that can be changed independently, so our cloning method works as expected.

Using clone() on an Array

As I've said before, it is generally not advisable that the clone method be used. However, one

case where I do recommend its use is for cloning arrays, as shown in example 8. Here, we

create an array of type String. We call the array.clone() method, using our array, and

assign the new cloned array to a reference variable called copiedArray. To prove that this not

just a reference to the same object, but a new, independent object, we call the

assertNotSame() with our original array and our newly created copiedArray. Both arrays

have the same content, as you can see when we print out the copiedArray in a for-each loop.

@Test
public void shouldCloneStringArray() {
 String[] array = {“one”,“two”,“three”};
 String[] copiedArray = array.clone();
 assertNotSame(array, copiedArray);
 for(String str: copiedArray){
 System.out.println(str);
 }

}

Example 8

The clone() method copies every string object in the array into a new array object that

contains completely new string objects. If you ran the code above, the clone() method would

work as expected and the test would be green. In this case, the clone() method is the

prefered technique for copying an array. Clone() works great with arrays of primitive values

and “immutables”, but it doesn’t work as well for arrays of objects. As a side note, in the Java

Specialists’ Newsletter Issue 124, by Heinz Kabutz, a test was performed that showed that the

clone() method is a bit slower for copying very small arrays, but for large arrays, where

performance matters most, it’s actually faster than any other method of copying arrays.

Alternatives to Clone(): The Copy Constructor

There are two recommended alternatives to using the clone() method that deal with the

shortcomings of clone(). The first method is using a copy constructor that accepts one

parameter - the object to clone. A copy constructor is really nothing very special. As you can

see in Example 8, it is just a simple constructor that expects an argument of the class it belongs

to.
The constructor then copies (clones) all sub-objects. If the new object just references the old

sub-objects, we call it a shallow copy. If the new object references truly copied objects, we call it

a deep copy. You can learn about this topic by reading my article Shallow vs Deep Copy.

http://www.javaspecialists.eu/archive/Issue124.html
http://www.javaspecialists.eu/archive/Issue124.html
http://www.marcus-biel.com/shallow-vs-deep-copy-video-tutorial/

package com.marcusbiel.java8course;

public class BMW implements Car, Cloneable {

 private Name ownersName;

 private Color color;

 public BMW(BMW bmw) {

 this.ownersName = new Name(bmw.ownersName);

 this.color = new Color(bmw.color);
 }

}

Example 9

Alternatives to Clone(): The static Factory Method

The other alternative is a static factory method. As the name implies, a static factory method is a

static method, used to create an instance of the class. It can also be used to create a clone.

There are a few common names for static factory methods; I’m going to use newInstance().

I’ve also created the same method for Name and Color, in order to recursively perform the

operation on all sub-objects.

package com.marcusbiel.java8course;

public class BMW implements Car, Cloneable {

 private Name ownersName;

 private Color color;

 public static BMW newInstance(BMW bmw){

 return new BMW(Name.newInstance(bmw.ownersName),

 Color.newInstance(bmw.color));

 }

 public BMW(Name ownersName, Color color){

 this.ownersName = ownersName;

 this.color = color;

 }
}

Example 10

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

Both of these alternatives are always better than the clone() method and produce the same

result: a clone of the original object. The static factory method might be a bit more powerful than

the copy constructor in certain cases, but generally both lead to the same result.

Immutables

The last thing I’d like to do in this article is take a look at the Name class:

package com.marcusbiel.java8course.car;

public class Name implements Cloneable{
 private String firstName;
 private String lastName;

 public static Name newInstance(Name name){
 return new Name(name.firstName, name.lastName);
 }

}

Example 11

Notice however, that the String members are passed by reference, without creating a new

object. The reason for that is that String is an Immutable object. An Immutable object will not

be changed by the reference in the new object, and therefore can be safely used without

cloning. This is an extremely important concept that applies when you are trying to create a

Deep Copy. If you are interested, you can read more about creating Immutables in my article

about Immutables which is coming soon!

Thanks for reading!

https://cleancodeacademy.com/
http://www.marcus-biel.com/shallow-vs-deep-copy-video-tutorial/

