

Java Object toString() Method

Introduction

In this article from my free Java 8 course, I will explain the Object toString() method. I will also

briefly touch on getClass() as it is relevant to the default toString() method.

The toString() Method

The Object toString() method returns a String that represents the object to the user that can be

printed to the console or a user interface. Let’s take a look at the default toString() method of the

class Object.

public String toString() {
 return getClass().getName() + ‘@’ + Integer.toHexString(hashCode());

}

Example 1

Example 1 shows how the toString() method concatenates the getClass().getName() method,

an ‘@’ symbol and a hexadecimal value for the Object’s hashCode to create a String that

represents the object. The getClass() method returns the runtime class of the class the object

belongs to. The getName() method then returns the shortname of the class without the full-

fledged package name. For example, if you have a BMW class and you instantiate a BMW

object, a call to getClass().getName() will return “BMW”. The Integer.toHexString(hashCode())

method creates a hexadecimal representation of the object’s hashCode. Here is a brief example

of a method that would utilize a toString() call:

@Test
public void shouldConvertBMWToString() {
 BMW bmw = new BMW(new Name("Marcus", "Biel"), new Color("silver"));

 System.out.println(bmw.toString());
 System.out.println(bmw);
}

Example 2

Both of the System.out.println() lines in Example 2 call Object toString(). This is because the

println() method is overloaded, meaning that it exists in several different variations that expect

different arguments. The first variation is expecting to print a String. Meanwhile, the second call

is expecting an Object, which it then proceeds to call the String.valueOf() method, which will

then call the toString() method. Please note that in production, generally speaking, you should

use logging instead of System.out.println(). While System.out.println() works well for debugging

or diagnostic information in the console, it lacks the flexibility of logging in terms of output. A

logger also normally yields better performance.

Returning to the method above, either System.out.println() call will return BMW@e2144e4. That

String isn’t very useful to us, especially if we are debugging the code and trying to understand

the current state of the object. Presumably, if we are calling a BMW object toString() we know

it’s a BMW object. For that reason, you should override the toString() method for most Entity

classes.

Overriding the Object toString() Method

package com.marcusbiel.java8course.car;

public class BMW implements Car, Cloneable {

 private Name ownersName;

 private Color color;

 public BMW(Name ownersName, Color color) {

 this.ownersName = ownersName;
 this.color = color;
 }

}

Example 3

Here you can see the BMW class that I referenced in my previous example. As you saw in the

last section, when we call println(bmw.toString()), we get something like BMW@e2144e4. That

is because we have not overridden the toString method as of yet. Before we override the

method, we should define what we want it to return. In the case of this class, it has two

attributes: the owner’s name (ownersName) and the color (color). We also may want to return

what type of class the object is, and we can easily do that by calling the getClass() method I

highlighted before.

@Override
public String toString() {

 return getClass().getName() + " [" + ownersName + ", " + color + "]";
}

Example 4

Above, I have overridden the toString() method for the BMW class. I used the @override as a

tool that I can use even though it is not necessary for the code to run. It causes my compiler to

make sure that I’m actually overriding a method (and not just writing a new method), and allows

someone reading my code to realize that I’m overriding a method. Another point that I’d like to

highlight is that I’m not writing color.toString(). This is unnecessary because the “+” sign

between Strings allows the compiler to realize that I am concatenating strings, and automatically

calls the toString() method for these objects.

@Test

public void shouldConvertBMWToString() {
 BMW bmw = new BMW(new Name("Marcus", "Biel"), new Color("silver"));
 System.out.println(bmw.toString());

}

Example 5

If I run this method again, assuming that we have created the Name toString() and the Color

toString() methods, our output will now be “BMW [Marcus Biel, silver]”. Now when we call the

toString() method we have something more meaningful than the hashCode that we can print to

the console, log, or print to a User Interface that will allow the user to see the content of the

object.

StringBuilder: An Alternative to String Concatenation

The final thing I’d like to highlight in this article is the StringBuilder class. String concatenation

with the “+” can cost a small amount of performance per call, and if you have a loop

concatenating millions of Strings this small difference could become relevant.

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

However, since the compiler will replace String concatenation and use a StringBuilder in most

cases, you should go for the code that is the most readable first. Further optimize for

performance only when needed, covered by tests.

Below, here is an alternative toString() method that uses StringBuilder rather than concatenating

the string. It will create the String dynamically, without all the plusses.

@Override
public String toString() {

 return new StringBuilder (“BMW [“).append(ownersName).append(“,“)
 .append(color).append(“]”).toString();
}

Example 6

Thanks for reading!

https://cleancodeacademy.com/

