

Basic Java Keywords

Introduction

Hi, welcome to my free Java 8 course! My goal is to teach you Java in the clearest possible

way, and to help you become a pragmatic perfectionist and a clean code craftsman.

In this article I'm going to introduce you to fifteen Java keywords / concepts that are central to

Java. To make the concepts more concrete, I'll illustrate them using the analogy of cars in a

garage.

Please note: I really try not to use any term before I have officially introduced it to you.

Getting a keyword explained using concepts I didn't know was something that always ticked me

off in classes, so I aim never to do this to you. For this reason, I might intentionally not explain

things one hundred percent correctly at first, but later, if necessary, I'll add the academically

correct explanation.

package

Ok, let’s start off with our first keyword: package. A package is like the folder structure on your

computer. It organizes the different files of your program. A package name must be unique

since there are millions of other programs out there, and you don’t want to have the same

program file name as someone else. Since Java code is heavily shared, the packages are used

to prevent name clashes. If two different code files in one program have the same name,

including their package name, only one of them will be loaded and the other code file will be

completely ignored, which will usually result in errors.

To guarantee that a package is unique it is commonplace to include one's domain name as part

of the package. Usually, the top or root folder of a package structure is the organization’s

domain name in reverse order. Using a package name is never required, but it is highly

recommended, even in the most basic programs. When declaring a package, you must declare

it in the first line of your program. Lowercase and singular nouns are commonly used for each

part of your package name. In my example, I’m starting the package name with my top level

domain, com, followed by my domain name, marcusbiel, then java8course since that is the

project we are working on. As I stated earlier, the sample code in this article is related to a

garage, so we will end the package name with "garage". Our full package name will therefore

be:

package com.marcusbiel.java8course.garage;

Example 1

Where possible, use terms that the client can understand and that relate to the business

(garage in my case) rather than technical terms like “frontend” or “backend”.

import

To simplify programs and reduce redundancy, many program files reuse existing code. To do

so, you could use the code file’s full name including its full package name. However, to make

your code more readable, you would usually add the file to the list of imports, which will allow

you to address the code by its simple file name, without having to constantly reference it by its

full package location.

The import statement, or statements, is written directly after the package declaration. When you

import code, you include the package name of the file. You can import specific files from the

package, or the entire package, by using a star symbol.

Let’s begin our code by importing the first car into our garage, a Bmw.

package com.marcusbiel.java8course.garage;

import com.marcusbiel.java8course.car.Bmw;

Example 2

Class

Programs can easily consist of thousands, if not tens of thousands, of lines of code. When you

have so much text in one place, it’s easy to get lost. To make code clearer, Java programmers

classify their code into different units, called classes.

As a programmer, you are free to name your packages and your classes whatever you like, but

your goal should always be clear. When you’re working with a business client, the client defines

what he wants; it is your job to know how to express this. If you can create a common language

to bridge the gap between the two, it will be easier for your client to understand the code without

much coding knowledge. For this reason, programmers tend to name their classes using a noun

that describes the class, starting with a capital letter.

For example we could create a class Car, which will later contain all the code related to a car

(Example 2). At the beginning of a class, there is an opening curly brace, and at the end of our

code there is a closing curly brace that shows the end of the class.

Classes should only be focused on one topic, and you should try to make them as small as

possible for the sake of readability and maintainability.

class Car {

}

Example 3

Method

A class will consist of one or more methods. A method defines how a certain task will be

completed using code. For example, a method timesTwo could double the amount of a given

input. Methods are also sometimes called functions. While this term isn't totally academically

correct, you may use it. By convention, a method is usually named after a verb that describes

what actions it performs. Methods can operate on anything: numbers, colors, sounds - you

name it.

timesTwo(2) => 4
add("ab", "c") => "abc"

print("Hello") => will print "Hello"

Example 4

Imagine your code as a book. A book has chapters (the packages), paragraphs (classes), and

sentences (methods). Methods can also call other methods, creating a chain of methods. As a

programmer, you want to structure your code by thinking of the current level of abstraction, just

like writing a book. Your code should end up being readable like a book!

An example of a method calling other methods would be a “prepareDinner()” method

internally calling a “prepareAppetizer()” method, followed by calling a method called

“prepareMainCourse()”, followed by a method called “prepareDessert()”.

 If our prepareAppetizer() method then has to call three more methods, “washLettuce()”,

“addTomatoes()” and “tossSalad()”, we’ve created a readable and understandable hierarchy

in our code. We could, of course, have prepareDinner() directly call all three of these

methods, instead of prepareAppetizer(), but that would clutter our code and make it difficult

to read.

Coming up with a clean structure and making your code “speak” is important. The harder it is to

understand what your program does, the easier it will be to introduce an error. As a rule of

thumb, try to keep your methods shorter than twenty lines. Personally, I aim for a method length

of just 1-3 lines.

Methods are defined similarly to classes. First you define the name of the method, usually a

verb beginning with a lowercase letter. Methods are normally verbs because they do something.

Classes are usually nouns because they are the objects that the methods are acting on/in. The

name of the method is followed by a pair of parentheses. Inside these parentheses you can

define anywhere from zero to an unlimited number of input fields. When you call a method, you

need to send specific values, called arguments, to the specific fields, called method parameters.

Arguments are the actual values you are sending to the method. In the context of the method,

the general values it will receive are called method parameters. I recommend an absolute

maximum of three to five method parameters, because more than that harms readability. The

fewer parameters, the better. After your parameters, you begin your method definition with an

opening curly brace and end it with a closing curly brace. In between, you put the code for your

method. Let’s take another look at our Car class:

package com.marcusbiel.java8course.garage;

import com.marcusbiel.java8course.car.Bmw;

class Car {

 drive(speed) {

 }
}

Example 5

Object

As I said before, a class is used to structure code in Java in the form of units of code. However,

this is only part of the story. A class is like a blueprint for what you want to do when the program

is running. The class Car defines how a car will behave. However, at runtime (when the

program is running), there will be a number of cars, each with its own set of values.

So a class only acts as a template for the objects that are created in your program. Each object

has the same set of behaviors, as defined by the class, but it also exists as its own set of values

in the program that could change as the program runs. For example, you could have two

Objects of class Car that both drive, but they could have different values for their respective

speeds.

Variable

A variable, as the name implies, varies in value. It is a placeholder for a value that you can

name and set. Variables can be used as the input and output for methods. Variables can be a

variety of different data types. There are two categories of data types: primitive data types and

object types. Primitive data types such as int, char, and boolean store things like numbers

and single characters. Object types are used to store objects and are referenced by object

reference variables. An example of a possible reference variable name for an object of type Car

would be myCar, myPorsche, or momsCar.

Dot

In Java, a “.” is not used to indicate the end of a sentence. Instead, a “.” is used by a variable

to execute or call a method. For example, we could have a variable car call the method

drive().

Semicolon

Since the “.” is used to indicate a method being called, the “;” is used to indicate the end of a

command, statement, or declaration.

car.drive();

Example 6

Variable Declaration

Before we can use a variable, we need to define it. You declare a variable by writing the type of

the variable, followed by its name, followed by a “;”.

Car myPorsche;

Example 7

Object Allocation

Once you’ve declared a variable, you can allocate it to a specific object. You can also do both of

these things in one line. First, you can create a variable of type Car, called myPorsche and

then, using an equals sign, assign it to a new Car object, with a first value of 1 and a second

value of 320.

Car myPorsche = new Car(1, 320);

Example 8

After we declare the variable and assign it to the object, whenever we use myPorsche we are

referencing this object created in the memory. You might also notice that we put two values into

the constructor of Car, but without actually looking at the constructor of Car we wouldn’t know

what their meanings were. This is one of the reasons to have as few fields as possible in

methods and constructors.

public

public is an access modifier that defines that the class or method that is tagged as public

can be used by any other class from any other package. Besides public, there are also other

access modifiers such as private, default, and protected, which I will cover in more detail

later.

void

For every method, it is required that you return a value, even when you don’t want to. However,

the tag void defines that the method will not return a value. If a method isn’t void, it can return

any kind of data type. A clean way to design your methods is to make each method fulfill one of

two roles. A query method returns a value but doesn’t alter the state of a class. A command

method alters the state of a class, but doesn’t return a value. drive(speed) is a command

method. It performs an action (“driving”), but it doesn’t return a value (and thus we define it as

void).

package com.marcusbiel.java8course.garage;

import com.marcusbiel.java8course.car.Bmw;

public class Car {

 public void drive(speed) {

 }

}

Example 9

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

@Test

The @ symbol indicates an annotation. Annotations are a way for the programmer to express to

the compiler certain background information about a method or a class that isn’t directly part of

the code. For now, I want to highlight one important annotation. Just know that any method

annotated with @Test indicates that a method is a test.

camelCase

When a class, variable, or method consists of more than one word, you use an uppercase letter

to indicate the new word. This is called camelCase, because the “humps” from the upper case

letters make the words look like camel humps. In some other programming languages, multiple

word names are separated with underscores, but in Java “camelCase” is used instead.

Object Oriented Language

Each programming language has a design in mind for its structure. Java is an object oriented

language. That is, everything in Java is focused around objects. A clever Java programmer

works towards fully understanding the problem and translating his theoretical model into objects

and classes that help him achieve his goals.

The main purpose in writing a program is to solve a problem in the most concise way possible.

The better job a programmer does, the easier the code will be to maintain, the faster the

program will run, and the fewer errors the program will have.

Java’s power comes from the idea that a model takes names and concepts from the real world,

allowing programmers to communicate easily with less code-savvy clients. While you might be

thinking about the code behind your Car class, your client might be thinking of a real car, but

both of you will understand each other.

That concludes the Basic Keywords article of my free Java 8 course.

Thanks for reading!

https://cleancodeacademy.com/

