

Java Collections Framework

Introduction

In this article from my free Java 8 course, you will be given a high-level introduction of the Java

Collections Framework (JCF). The term ‘Collection’ has several meanings, unfortunately. To

clear things up, we will first discuss the word’s meanings upfront.

‘Collection’ can refer to:

● its day-to-day meaning as a compilation or group of things.

● the collection of interfaces and classes that make up the Java Collections Framework.

● some data structure like a box or container that can hold a group of objects like an array.

● the java.util.Collection interface, one of the two main JCF interfaces.

● java.util.Collections, a utility class which can help to modify or operate on Java

collections.

This piece is based on Chapter 11 of the OCA/OCP Study Guide, a book packed with

knowledge on Java programming. As a great fan of the authors, Kathy Sierra and Bert Bates, I

recommend you read the book even if you don’t plan on being a certified Java programmer.

What is the Java Collections Framework, from a high-level perspective? First of all, it is in fact a

library, a toolbox of generic interfaces and classes. This toolbox contains various collection

interfaces and classes that serve as a more powerful, object-oriented alternative to arrays.

Collection-related utility interfaces and classes also make for better ease of use.

Overview

In this section, we will be going into more detail as we delve into the interface and class

hierarchy for collections. Unlike arrays, all collections can dynamically grow or shrink in size. As

I said before, collections hold groups of objects. A map can store strongly-related pairs of

objects together, each pair being made up of a key and a value. A value does not have a

specific position in a map, but can be retrieved using the key it is paired with. Don’t worry if this

is too much to take in right now as we will take a more detailed look later on.

https://www.amazon.com/gp/product/0071591060/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0071591060&linkCode=as2&tag=marcusbiel-20&linkId=NO2LPJ7A2M7QHVHZ
https://www.marcus-biel.com/oracle-java-certification/

Figure 1, the Collection hierarchy

Figure 1 shows the hierarchy of classes and interfaces extending or implementing the

Collection interface – it would be useful to at least familiarize yourself with the names listed

there. The Collection interface sits on top of a number of sub-interfaces and implementing

classes. A Collection can hold a group of objects in different ways which Set, List and

Queue provide. A Set is defined as a group of unique objects. What is considered to be unique

is defined by the equals method of the object type it holds. In other words, a Set cannot hold

two equal objects. A List is defined as a sequence of objects. In contrast to a Set, a List can

contain duplicate entries. It also keeps its elements in the order in which they were inserted. A

Queue has two sides. Entries are added to its tail end while entries are removed from the top or

the head. This is often described “first-in, first-out” (FIFO), which is oftentimes much like waiting

in line in real life, i.e. the first person queuing up is the first person to leave the queue.

The Set Interface

HashSet, LinkedHashSet and TreeSet

HashSet, LinkedHashSet and TreeSet are implementations of Set, located around the left

end of the Collection interface hierarchy in Figure 1. HashSet is the default implementation

used in most cases. LinkedHashSet is like a combination of HashSet and List in that it

does not allow duplicate entries as with Sets, but traverses its elements in the order they were

inserted, like a List would do.

TreeSet will constantly keep all its elements in some sorted order. Keep in mind, however, that

there is no such thing as a free lunch and that every added feature comes at a certain cost.

SortedSet and NavigableSet

After looking at three classes implementing Set, let’s also take a look at the two sub-interfaces

we haven’t talked about yet. As the name implies, SortedSet is a Set with the property that it

is always sorted. The NavigableSet interface, added with Java 6, allows us to navigate

through the sorted list, providing methods for retrieving the next element greater or smaller than

a given element of the Set.

The List Interface

ArrayList and LinkedList

ArrayList is the default implementation for List, located to the middle of the collection

hierarchy in Figure 1. Like any List implementation, it does allow duplicate elements and

iteration in the order of insertion. As it is based on arrays, it is very fast to iterate and read from,

but very slow to add or remove an element at random positions, as it has to rebuild the

underlying array structure. In contrast, LinkedList makes it easy to add or remove elements

at any position in the list while being slower to read from at random positions.

Vector

As a side note, we shortly consider java.util.Vector, a class that has been around since

JDK 1, before the Collections Framework which was added with Java 2. Long story short, its

performance is suboptimal, so no new code should ever have to use it. An ArrayList or

LinkedList simply does a better job.

The Queue Interface

Lastly, we take a look at the classes implementing Queue. Another thing to mention about

LinkedList is that while it implements List, it actually also implements Queue. It does so

based on the fact that its actual implementation as a doubly-linked list makes it quite easy to

also implement the Queue interface.

PriorityQueue

Besides LinkedList, another common Queue implementation is PriorityQueue. It is an

implementation that keeps its elements ordered automatically. It has functionality similar to

TreeSet, except that it allows duplicate entries.

The Map Interface

We now take a look at the Map interface, one which oddly enough has no relation to the

Collection interface. A Collection operates on one entity, while a Map operates on two: a

unique key, e.g. a vehicle identification number, and an object related to the key, e.g. a car. To

retrieve an object from a Map, you would normally use its key. Map is the root of quite a number

of interfaces and classes, as depicted on Figure 2.

Hashtable, Hashmap and LinkedHashMap

The Hashtable class was the first Collection in Java 1 that was based on the hash table data

structure. Unfortunately, like Vector, the class is deprecated because of its suboptimal

performance. We can forget about it and use the other Map implementations instead. HashMap

is the default implementation that you will find yourself using in most cases.

A Map usually doesn’t make any guarantee as to how it internally stores elements. An exception

to this rule, however, is LinkedHashMap, which allows us to iterate the map in the order of

insertion.

Figure 2, the Map hierarchy

SortedMap

Let’s look at the interfaces that extend Map. As the name implies, SortedMap extends Map and

defines the contract of a constantly sorted map. NavigableMap takes it even further, adding

methods to navigate sorted maps. This allows us to get all entries smaller or bigger than some

entry, for example. There are actually many similarities between the Map and Set hierarchies.

The reason is that Set implementations are actually internally backed by Map implementations.

The Bigger Picture

You might have noticed that Java’s Collection classes often contain data structures based

on their name. To choose the best collection for a given situation, you have to compare and

match the properties of data structures like LinkedList, Hashtable or TreeSet to the

problem at hand. In short, there is no single best option as each one has its own advantages

and disadvantages. There is actually a lot more ground to cover on this, as this overview has

only shown but a tiny part of the huge scope of Collection and Map classes. In fact, there are

even concurrent containers in the Java Collections Framework which are used for concurrent

programming.

Generics

The subject of generics is at least as broad as the Java Collections Framework. In the context of

this article, we will only discuss the bare minimum needed to understand the collections

framework. It’s OK to have a lot of open questions after this brief overview. Everything will be

explained one after the other.

List<String> myList = new ArrayList<String>(100);

Notice the usage of the angle brackets. To the left side, we define a List variable myList with

the String parameter in the angle brackets. We tell the compiler that the myList variable is to

only ever refer to some list that contains Strings. We then create an object of type

ArrayList and again tell the compiler that the list is supposed to only contain Strings. In

other words, this is what makes the containers type-safe. Also note the use of the List type for

the variable instead of ArrayList. This makes our code more flexible. You will only ever

create the object once but you will often end up using it in many places. That being said, when

you declare a List instead of an ArrayList, you get to replace the ArrayList with a

LinkedList later on, and all you had to change was that one line of code.

Collection<String> myList = new ArrayList<String>(100);

In case you don’t really need methods specific to List, you could take it a bit further and use

Collection instead. It is a good idea to always use the least specific, smallest interface as

possible as a variable type. Note the use of 100 as the ArrayList constructor argument.

In this case, it’s a performance optimization. Since ArrayList and all hashtable-based collections

internally operate on arrays, when such a collection grows in size, it creates larger arrays on the

fly and transfers all contents from the old array to the new one. Although this takes some extra

time, modern hardware is so fast that this usually shouldn’t be a problem. On the other hand,

knowing the exact or even just an approximate size for the collection is better than settling for

the default collection sizes. Knowing what data structures Java collections are based on helps

give a better understanding of performance in cases like this one. Paying attention to such small

details is often the difference between a regular developer and a software craftsman.

Map<VIN, Car> myMap = new HashMap<>(100);

See how a Map is declared and how HashMap is constructed above. A map is a relation of one

identifying key element to one value element and both can be of different types. In the

example above, VIN – the vehicle identification number – is used as the key while a Car object

is the value. The type parameters are added as a comma-separated list in angle-brackets. As of

Java 7, if you declare the variable and create the object all in the same line, you can leave the

second pair of angle brackets empty as the compiler infers the type of the object from the

generic type of the reference variable. The empty angle brackets are called a diamond operator,

owing its name to how the empty brackets form a diamond shape. What has been discussed so

far is just the usage of generic classes, however, where we lock in the concrete type parameters

to be used in instantiation. All of this is only possible if some method, interface, or class is

defined to be used in a generic way beforehand.

Writing Generic Code

Listing 1 shows a generically defined interface. In the first line, the interface is defined as one

operating on two generic types that have to be specified at a later time. When these types are

locked in, the types the interface methods use are automatically specified. If you see one-letter

types in code, it could mean that it can be used in a generic way.

public interface MyInterface<E, T> {
 E read();

 void process(T object1, T object2);
}

Listing 1

Other Utility Interfaces

● java.util.Iterator

● java.lang.Iterable

● java.lang.Comparable

● java.lang.Comparator

Listed above are some additional utility interfaces from the Java Collections Framework. They

are implemented by classes of the framework or the JDK in general. Additionally, they can also

be implemented by your own classes, leveraging the features of and interoperability with the

Collections Framework. Strictly speaking, java.lang.Iterable is not part of the framework,

but more precisely sits on top of it. It is the super-interface of java.util.Collection, which

means that every class that implements Collection also implements java.lang.Iterable.

java.util.Iterator

● boolean hasNext();

● E next();

● void remove();

An iterator is an object that acts like a remote control for iterating through things, oftentimes

collections. hasNext() returns true if a collection has more elements, next() returns the next

element in the iteration, while remove() removes the last element returned by an iterator from

its underlying collection.

java.lang.Iterable

● Iterator iterator()

Iterable provides only one method which returns an Iterator. Every Collection that

implements this interface can be used in the for-each loop, greatly simplifying the usage of

your home-made collections. To avail yourself of the use of the for-each loop for your collection,

you only have to execute two simple steps: First, write an Iterator for your collection and

implement all its methods hasNext, next and remove. Second, implement the Iterable

interface by adding an iterator method that returns an instance of the Iterator

implementation you wrote in the first step.

java.lang.Comparable

● int compareTo(T o)

Implementing Comparable defines a natural sort order for your entities. The interface contains

only one method you need to implement, compareTo, which compares your Comparable with

T o, the argument representing another entity of the same type. Return a negative integer if the

object is less than the given argument o, 0 if the object is equal to the o, and a positive integer if

the object is greater than o.

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

What it means for one thing to be lesser or greater than another is for you to define. For

numbers, it would easily follow that 1 is smaller than 5. But what about colors? This entirely

depends on what you believe to be the natural ordering of your entities. When you put

Comparable objects into a TreeSet or TreeMap for example, it will use your custom-built

compareTo method to automatically sort all elements in your collection. As you can see, the

Java Collections Framework has been greatly designed with extension in mind, offering a lot of

possibilities for you to plug in your own classes.

java.lang.Comparator

● int compare(T o1, T o2)

This interface is very similar to Comparable. It allows you to define additional sorting orders,

e.g. a reverse order. The sorting logic is not directly implemented in your entity class. Instead, it

is defined in an external sorting strategy class that can optionally be attached to a Collection

or a sorting method to define alternative sorting orders for your collections of entities. The same

rules for the interface contract of Comparable apply: return a negative integer if the first

argument, o1, is less than the second argument o2, 0 if both arguments are equal, and a

positive integer if o1 is greater than o2.

Collections and Arrays

Last but not least, we take a look at the two utility classes java.util.Collections and

java.util.Arrays. Like a Swiss army knife, both provide static helper methods that greatly

enhance the general usefulness of the Collection classes. Collections offers methods

like sort, shuffle, reverse, search, min, and max. Arrays is actually quite similar to

Collections except that it operates on raw arrays, i.e. it allows us to sort or search through

arrays, for example.

Thanks for reading!

https://cleancodeacademy.com/

