

The Object.finalize() Method

Introduction

In this article from my free Java 8 course, I will be discussing the Object finalize()

method in Java. The class Object, which is the superclass of all classes, defines the

finalize() method as well as other methods including clone, toString, hashCode and

equals.

What is Finalize?

finalize() is a hook method of the class Object.

A hook method is an empty method in a base class that you can override to provide
functionality that will be called in specific situations by the existing process. In other words
you have a mechanism to "hook" into the existing process and extend its functionality. This
concept exists independently of any specific programming language. Using inheritance, this
can be realized in Java by providing an empty method in a parent class. By overwriting this
method in a child class, the code provided will automatically be called by the surrounding
logic / process.

According to the Java 8 documentation, it is called by the Garbage Collector when there are

no more references to the object. The usual purpose of this method is to perform cleanup

actions just before the object is irrevocably discarded.

The Garbage Collector

The garbage collector, as you can imagine, collects the ‘garbage’ in your program. The

garbage that’s being cleaned up are the objects that you’ve created, processed on, and then

later put aside when you no longer needed them. The garbage collector’s main responsibility

is to free up memory resources, so that your program hopefully never runs out of memory.

However, the garbage collector runs asynchronously, and we have no control or influence

over if and when it will be running. We can give it recommendations, but they are just that -

recommendations. The garbage collector is not bound by them.

A computer uses several types of hardware resources, and those are physically limited by

nature. Therefore, we have to use those resources wisely. In Java, unlike in older

programming languages like C++, memory is automatically managed by the garbage

collector; however, there are other resources, usually “IO resources”, that we need to

manage by ourselves.

The “I” of “IO” stands for input, and the “O” stands for output. Therefore, IO is a general term

for input or output functionality (also referred to as communication) from a resource such as

a file, an external system, or a database. Input is read into our system, while output is

written from our system. A typical name for a class or interface that is used to read input is

“Reader”, while a typical name for a class or reader that is used to write output is “Writer”.

Those resources must be requested when needed, and released when not needed anymore.

As this is rather tedious, the idea was to automatically release them just before the objects

https://marcus-biel.com/object-clone-method/
https://marcus-biel.com/object-tostring-method/
https://marcus-biel.com/hashcode-and-equals/
https://marcus-biel.com/hashcode-and-equals/
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#finalize--

that are using them are discarded, and hence, the finalize() method was born. However, as

there is no guarantee that the finalize() method is ever called, there is no guarantee that

those resources are ever released either, and therefore, the finalize() method is useless. If

you’re interested in learning more about this you could read Effective Java by Joshua Bloch,

where he’s done a lot of interesting research on the subject. For example, he’s tested and

found that creating an object and destroying it using an overridden finalize() method is

430 times slower than using the inherited method.

Overriding finalize()

In order to have the finalize() method run, let’s implement a Porsche class, in which we

will override it. To override the method, we must make sure that the name and signature of

the overridden method are the exactly same in both the superclass and subclass. The only

change I’m going to make, and this is allowed, is that I’m going to make it public, because

public is more visible than protected. This allows the method to be called outside of our

Porsche class.

public class Porsche {

 public void finalize(){

 }

}

Example 1

The @Override Annotation

The @Override annotation helps us be sure that we are overriding the method and not just

writing a new method accidentally, as you can only override a method if the method signature

is the same as in the superclass (a method’s signature is its name as well as the number and

type of its parameters). If we add an argument to our finalize() method, this is no longer

overriding, but it is overloading the method. (It's merely a method that has the same name,

but with different parameters), and it will give us a compile time error.

This helps us in identifying immediately at compile time, while still in our IDE, a problem that

could result in unexpected results at runtime (such as our “overridden” function not being

called). That’s why whenever you override a method, you should always add an @Override

annotation.

public class Porsche {

 IOReader ioReader = new IOReader();

 @Override
 public void finalize(){
 ioReader.close();

 }
}

Example 2

https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321356683&linkCode=as2&linkId=3THGIAE4ZCRN2DWO&redirect=true&ref_=as_li_tl&tag=marcusbiel-20

Inside our finalize method, I’ve written code that calls the close()method on all the objects

that an object of class Porsche would create. Let’s say, for instance, that we have an

IOReader which is reading a character stream from a file. Once we are finished, we would

like to close this reader by calling the close() method provided by IOReader. Now we

have our overwritten finalize() method.

However, there are problems with our implementation. First, as already mentioned, we do not

have any guarantee that this method will ever be called. It is totally under the JVM’s control,

and outside of our influence. The second problem is that if within this code we have any

exception that is not handled, the process will stop and the objects will remain in a weird

“zombie” state, which slows down garbage collection.

The Alternative to Finalize

The recommended alternative would be to create our own close() method which cleans

up/closes all the resources no longer in use, in this case IoReader. This way we have more

control over our resources, and aren’t depending on the garbage collector.

public class Porsche {

 IOReader ioReader = new IOReader();

 public void close(){

 ioReader.close();
 }

}

Example 3

Let’s also write a draft of closing an object in the CarSelector class. First, let’s create the

CarSelector class and add a Porsche object with the following line: Porsche porsche =

new Porsche(); and use our new close() method. We’ll surround this in a try, catch,

finally block and use our finally block to clean up our Porsche. The critical point here is that

you have a finally section at the end, because the cool thing about finally is that, even if an

exception occurs, it is guaranteed to always be executed. Which is exactly what we need to

solve our problem and make sure all non-memory resources are always freed. Here is how

you can properly do it in Java:

© 2017, Marcus Biel, Software Craftsman
https://cleancodeacademy.com

All rights reserved. No part of this article may be reproduced or shared in any manner
whatsoever without prior written permission from the author

package com.marcusbiel.java8course;

public class CarSelector {

 public static void main(String[] arguments) {
 Porsche porsche = new Porsche();

 try {

 // some code
 } finally {
 porsche.close();

 }
 }
}

Example 4

This way we guarantee that once we are done with our porsche object, we will close all of

the affiliated resources involved, without overwriting finalize(). The finally block does

exactly what we wanted our finalize() method to do.

The finalize() method is extremely flawed. The garbage collector has a mind of its own

and we can’t truly control when and how it operates. Since overriding the

finalize()method doesn’t effectively solve our problem, you can instead use a try-(catch)-

finally block to close any extra resources when you’re done with an object. Since the close

method is our own method, unaffiliated with the garbage collector, it works exactly as

intended, every time.

Thanks for reading!

https://cleancodeacademy.com/

