

Java for Passionate Developers

Java for
Passionate Developers

Marcus Biel

version 0.1

Copyright Notice
© 2019 Marcus Biel. All rights reserved worldwide. No part of this book

may be reproduced or copied without the expressed written permission of
the Author.

2

Java for Passionate Developers

Table of Contents
Part 0: Introduction 5

A About The Author
B About This Book

6
8

Part 1: Getting Started 9

1 Setting up your local development environment
2 Basic Java Keywords
3 Writing Your First Java Program
4 Debriefing

10
13
23
31

Part 2: Basic Concepts 36

5 Instances and Constructors
6 Access Modifiers
7 Development Tools
8 Booleans and Conditional Statements
9 Basic Loops

10 For-Each Loops

37
47
55
58
66
71

3

Java for Passionate Developers

11 Arrays
12 Enums
13 Switch Statements
14 Logging
15 The Java Main Method

73
82
89
95

105

Part 3: Intermediate Concepts 112

16 Exceptions
17 Interfaces
18 Inheritance and Polymorphism
19 The Object Finalize Method
20 The Object Clone Method
21 The Java Object toString() Method
22 Static Imports, Data Types, and More!
23 Java Collections Framework
24 ArrayList
25 Linked List Data Structure
26 java.util.LinkedList
27 Object Identity vs Equality
28 The Java Comparable Interface

113
124
131
145
150
159
164
173
184
202
211
228
233

Part 4: Advanced Concepts 240

29 Shallow vs Deep Copy
30 Immutable Classes

241
249

4

Java for Passionate Developers

Part 0
Introduction

5

Java for Passionate Developers

About The Author

Marcus Biel (@MarcusBiel) works as Director of Developer Experience for
Red Hat. He is a well-known software craftsman, Java influencer and
Clean Code Evangelist. He is also a regular speaker at Java conferences
all over the world, such as JBCN Conf Barcelona, JPoint Moscow and JAX
London. Besides this, he works as a technical reviewer for renowned Java
books such as Effective Java, Core Java SE 9 for the Impatient or Java by
Comparison.
In 2015, Marcus started a Java blog and YouTube channel that makes
Java accessible to passionate developers. There are many advanced
tutorials that you can find online, but tutorials with a solid background like
this one are rare.
Marcus has become well-known in the Java community, with a total of 70
000 followers across various social media platforms. In 2017, the editorial
team at jaxenter.com rated him #13 in their list of the world’s top Java
influencers.
Aside from this, Marcus is an individual member of the Java Community
Process (JCP), as well as a member of the association of the German
Java User Groups e.V. (iJUG) and the local Java and software
craftsmanship communities in his hometown, Munich.
Marcus has worked on various Java-related projects since 2001, mainly in
the financial and telecommunications industries. In 2007 he graduated with
a degree in computer science from the Augsburg University of Applied
Sciences in Germany. In 2008, Marcus successfully completed his Sun
Certified Java Programmer certification (SCP 6.0), of which he is still very
proud today.
For Marcus, programming is not just a job, but rather a meaningful,
creative craft that he practices every day with joy and passion. Therefore
he attaches great importance to the quality of his work. Marcus believes
that while programmers can write ‘quick and dirty’ code, and deceive
themselves that they are saving time and money, doing it properly is worth

6

https://twitter.com/MarcusBiel
http://amzn.to/2FEQgV2
http://amzn.to/2FEQgV2
https://amzn.to/2EkblHS
https://amzn.to/2EkblHS
https://amzn.to/2L8zVfu
https://amzn.to/2L8zVfu
https://amzn.to/2L8zVfu
https://www.youtube.com/MarcusBiel
https://www.youtube.com/MarcusBiel
https://www.jcp.org/
https://www.jcp.org/
https://www.jcp.org/
https://www.ijug.eu/en/home/
https://www.ijug.eu/en/home/
https://www.ijug.eu/en/home/

Java for Passionate Developers

the initial time and effort. The code will then work reliably and consistently,
require less maintenance, and prove to be more economical in the long
run.
When he takes a break from Java, Marcus likes hiking in the Alps as well
as backpacking. He also likes dancing, a good beer or wine, and enjoying
all that his hometown, Munich, has to offer. He lives with his wife and baby
son, within walking distance of the Oktoberfest, and yes, he owns
Lederhosen.

7

Java for Passionate Developers

 About This Book

Hi, welcome to my Java 8 book! My goal is to teach you Java in the
clearest possible way, and to help you become a pragmatic perfectionist
and clean code craftsman like I am!

This book was written in a very unconventional way. In 2015, I started
creating a Java video course on YouTube. As the course became more
and more popular, the calls for a text version of it became louder and
louder. At first I simply published the typed transcripts of my video lessons.
Over the years, I kept improving and refining these transcripts and
eventually expanded their content beyond that of the original video course.
It became a collection of tutorials that could be downloaded as PDFs from
my website.

The next step was to turn this PDF collection into the present book. It
should be mentioned though that this evolutionary stage is far from
complete. There are still many chapters yet to be written, and I am
constantly updating and improving the content to keep it current. In the
same way that we never stop learning and our own journey is never
finished, this book will probably also never be done.

Acknowledgment

Over the years I have had the support of hundreds of people without
whom I would not have made it this far! I couldn’t list all of them here, but I
would like to take the opportunity to thank some of them: Jacques Burns,
Lyn and Ben Stewart, Michael Harvey and Ben Eisenberg.

8

Java for Passionate Developers

Part 1

Getting Started

9

Java for Passionate Developers

Chapter 1
Setting up your local development

environment

If you are just starting out with programming, you’ll need to set up your
development environment to get started. This chapter will show you how
do just that on 64-bit Windows. If you already have a Java environment
that you are happy with, feel free to skip this chapter :)

Downloading and Installing the JDK (Java
Development Kit)

As you might have guessed, the first thing you need for your Java
programming environment is Java.

To download the Java Development Kit, open this link. If there are multiple
versions available, you can pick whichever one you want, but it’s generally
best to go with the latest version. Click the blue _button on
the version that you wish to download.

You should now see a bunch of download options. If there are multiple
versions on this page, look at the latest version. Before you go any further,
click the checkbox that says . Now you can
select the download for your own operating system. If you can choose
between x86 and x64 versions, you should go for the x64 version. If you
can choose between downloads with different file extensions, it’s best to
go with the .exe extension.

10

https://www.oracle.com/technetwork/java/javase/downloads/index.html

Java for Passionate Developers

Click on the link of the installer you need and wait for the installer to
download. When it’s done, open the installer. You should get a welcome
screen similar to this:

If you want to choose where to install the JDK, check the “Change
destination folder” option. Leave it blank if you want to install the JDK to
the default location. Then click “Install” and follow any prompts you may
receive. After everything has finished installing, you may need to restart
your computer.

Downloading and Installing Your Text Editor

The text editor we will be using is TextPad. There are many others but this
one is my favourite because of its simplicity and powerful features. It can
be found here.

As with the JDK you should always select the latest version available. You
should see a list of versions based on your language. Under your
language, select the 64-bit version and wait for the file to download.

Open the downloaded file, and run the setup file inside it to install
TextPad.

11

https://www.textpad.com/download/index.html

Java for Passionate Developers

Downloading and Installing Your Integrated
Development Environment (IDE)

Follow this link to view the various editions of Eclipse that are available.
Look for the “Eclipse IDE for Java Developers” package shown below:

Select the installer for your operating system and wait for it to download.

Once you’ve downloaded the IDE, open the file and extract its contents to
any location on your hard drive. To extract the file using Windows
Explorer, simply click ‘Extract all’ at the top of the screen (see below) and
choose an empty folder for Eclipse to be stored in.

Make sure that the location you choose is easy to access - you will need to
navigate to your folder whenever you want to run Eclipse.

Once the files have been extracted, you can run the file named
‘eclipse.exe’ (the correct file has the Eclipse logo as the icon). It will take a
while to load and may slow your computer down. Once Eclipse is open, it
will run smoothly.

You will be prompted to choose a workspace - you can use the default one
or choose another location for your first workspace. Workspaces are like
desks - you could have many desks, which are all laid out differently, with
different purposes for each desk. You don’t need to worry about multiple
workspaces when you are starting out with Java programming.

12

https://www.eclipse.org/downloads/packages/

Java for Passionate Developers

Now you’re all set up, and ready to start programming in Java!

13

Java for Passionate Developers

Chapter 2
Basic Java Keywords

Introduction

In this chapter I'm going to introduce you to fifteen Java keywords /
concepts that are central to Java. To make the concepts more concrete, I'll
illustrate them using the analogy of cars in a garage.

Please note: I really try not to use any term before I have officially
introduced it to you. Getting a keyword explained using concepts I didn't
know was something that always ticked me off in classes, so I aim never
to do this to you. For this reason, I might intentionally not explain things
one hundred percent correctly at first, but later, if necessary, I'll add the
academically correct explanation.

package

Ok, let’s start off with our first keyword: package. A package is like the
folder structure on your computer. It organizes the different files of your
program. A package name must be unique since there are millions of
other programs out there, and you don’t want to have the same program
file name as someone else. Since Java code is heavily shared, the
packages are used to prevent name clashes. If two different code files in
one program have the same name, including their package name, only
one of them will be loaded and the other code file will be completely
ignored, which will usually result in errors.

14

Java for Passionate Developers

To guarantee that a package is unique it is commonplace to include one's
domain name as part of the package. Usually, the top or root folder of a
package structure is the organization’s domain name in reverse order.
Using a package name is never required, but it is highly recommended,
even in the most basic programs. When declaring a package, you must
declare it in the first line of your program. Lowercase and singular nouns
are commonly used for each part of your package name. In my example,
I’m starting the package name with my top level domain, com, followed by
my domain name, marcusbiel, then javaBook since that is the project
we are working on. As I stated earlier, the sample code in this chapter is
related to a garage, so we will end the package name with "garage". Our
full package name will therefore be:

1 package com.marcusbiel.javaBook.garage;

Example 1

Where possible, use terms that the client can understand and that relate to
the business (garage in my case) rather than technical terms like
“frontend” or “backend”.

import

To simplify programs and reduce redundancy, many program files reuse
existing code. To do so, you could use the code file’s full name including
its full package name. However, to make your code more readable, you
would usually add the file to the list of imports, which will allow you to
address the code by its simple file name, without having to constantly
reference it by its full package location.

The import statement, or statements, is written directly after the package
declaration. When you import code, you include the package name of the
file. You can import specific files from the package, or the entire package,
by using a star symbol.

15

Java for Passionate Developers

Let’s begin our code by importing the first car into our garage, a Bmw.

1
2
3

package com.marcusbiel.javaBook.garage;

import com.marcusbiel.javaBook.car.Bmw;

Example 2

Class

Programs can easily consist of thousands, if not tens of thousands, of lines
of code. When you have so much text in one place, it’s easy to get lost. To
make code clearer, Java programmers classify their code into different
units, called classes.

As a programmer, you are free to name your packages and your classes
whatever you like, but your goal should always be clear. When you’re
working with a business client, the client defines what he wants; it is your
job to know how to express this. If you can create a common language to
bridge the gap between the two, it will be easier for your client to
understand the code without much coding knowledge. For this reason,
programmers tend to name their classes using a noun that describes the
class, starting with a capital letter.

For example we could create a class Car, which will later contain all the
code related to a car (Example 3). At the beginning of a class, there is an
opening curly brace, and at the end of our code there is a closing curly
brace that shows the end of the class.

Classes should only be focused on one topic, and you should try to make
them as small as possible for the sake of readability and maintainability.

16

Java for Passionate Developers

5

12

class Car {
 [...]
}

Example 3

Method

A class will consist of one or more methods. A method defines how a
certain task will be completed using code. For example, a method
timesTwo could double the amount of a given input. Methods are also
sometimes called functions. While this term isn't totally academically
correct, you may use it. By convention, a method is usually named after a
verb that describes what actions it performs. Methods can operate on
anything: numbers, colors, sounds - you name it.

timesTwo(2) => 4
add("ab", "c") => "abc"
print("Hello") => will print "Hello"

Example 4

Imagine your code as a book. A book has chapters (the packages),
paragraphs (classes), and sentences (methods). Methods can also call
other methods, creating a chain of methods. As a programmer, you want
to structure your code by thinking of the current level of abstraction, just
like writing a book. Your code should end up being readable like a book!

An example of a method calling other methods would be a
“prepareDinner()” method internally calling a “prepareAppetizer()”
method, followed by calling a method called “prepareMainCourse()”,
followed by a method called “prepareDessert()”.

 If our prepareAppetizer() method then has to call three more
methods, “washLettuce()”, “addTomatoes()” and “tossSalad()”, we’ve
created a readable and understandable hierarchy in our code. We could,

17

Java for Passionate Developers

of course, have prepareDinner() directly call all three of these methods,
instead of prepareAppetizer(), but that would clutter our code and
make it difficult to read.

Coming up with a clean structure and making your code “speak” is
important. The harder it is to understand what your program does, the
easier it will be to introduce an error. As a rule of thumb, try to keep your
methods shorter than twenty lines. Personally, I aim for a method length of
just 1-3 lines.

Methods are defined similarly to classes. First you define the name of the
method, usually a verb beginning with a lowercase letter. Methods are
normally verbs because they do something. Classes are usually nouns
because they are the objects that the methods are acting on/in. The name
of the method is followed by a pair of parentheses. Inside these
parentheses you can define anywhere from zero to an unlimited number of
input fields. When you call a method, you need to send specific values,
called arguments, to the specific fields, called method parameters.
Arguments are the actual values you are sending to the method. In the
context of the method, the general values it will receive are called method
parameters. I recommend an absolute maximum of three to five method
parameters, because more than that harms readability. The fewer
parameters, the better. After your parameters, you begin your method
definition with an opening curly brace and end it with a closing curly brace.
In between, you put the code for your method. Let’s take another look at
our Car class:

18

Java for Passionate Developers

1
2
3
4
5
6
7

11
12
13

package com.marcusbiel.javaBook.garage;

import com.marcusbiel.javaBook.car.Bmw;

class Car {

 drive(speed) {
 [...]
 }
}

Example 5

Object

As I said before, a class is used to structure code in Java in the form of
units of code. However, this is only part of the story. A class is like a
blueprint for what you want to do when the program is running. The class
Car defines how a car will behave. However, at runtime (when the
program is running), there will be a number of cars, each with its own set
of values.

So a class only acts as a template for the objects that are created in your
program. Each object has the same set of behaviors, as defined by the
class, but it also exists as its own set of values in the program that could
change as the program runs. For example, you could have two Objects of
class Car that both drive, but they could have different values for their
respective speeds.

Variable

A variable, as the name implies, varies in value. It is a placeholder for a
value that you can name and set. Variables can be used as the input and
output for methods. Variables can be a variety of different data types.
There are two categories of data types: primitive data types and object

19

Java for Passionate Developers

types. Primitive data types such as int, char, and boolean store things
like numbers and single characters. Object types are used to store objects
and are referenced by object reference variables. An example of a
possible reference variable name for an object of type Car would be
myCar, myPorsche, or momsCar.

Dot

In Java, a “.” is not used to indicate the end of a sentence. Instead, a “.”
is used by a variable to execute or call a method. For example, we could
have a variable car call the method drive().

Semicolon

Since the “.” is used to indicate a method being called, the “;” is used to
indicate the end of a command, statement, or declaration.

car.drive();

Example 6

Variable Declaration

Before we can use a variable, we need to define it. You declare a variable
by writing the type of the variable, followed by its name, followed by a “;”.

Car myPorsche;

Example 7

20

Java for Passionate Developers

Object Allocation

Once you’ve declared a variable, you can allocate it to a specific object.
You can also do both of these things in one line. First, you can create a
variable of type Car, called myPorsche and then, using an equals sign,
assign it to a new Car object, with a first value of 1 and a second value of
320.

Car myPorsche = new Car(1, 320);

Example 8

After we declare the variable and assign it to the object, whenever we use
myPorsche we are referencing this object created in the memory. You
might also notice that we put two values into the constructor of Car, but
without actually looking at the constructor of Car we wouldn’t know what
their meanings were. This is one of the reasons to have as few fields as
possible in methods and constructors.

public

public is an access modifier that defines that the class or method that is
tagged as public can be used by any other class from any other
package. Besides public, there are also other access modifiers such as
private, default, and protected, which I will cover in more detail later.

void

For every method, it is required that you return a value, even when you
don’t want to. However, the tag void defines that the method will not
return a value. If a method isn’t void, it can return any kind of data type. A
clean way to design your methods is to make each method fulfill one of
two roles. A query method returns a value but doesn’t alter the state of a
class. A command method alters the state of a class, but doesn’t return a

21

Java for Passionate Developers

value. drive(speed) is a command method. It performs an action
(“driving”), but it doesn’t return a value (and thus we define it as void).

1
2
3
4
5
6
7

11
12
13

package com.marcusbiel.javaBook.garage;

import com.marcusbiel.javaBook.car.Bmw;

public class Car {

 public void drive(speed) {
 [...]
 }
}

Example 9

@Test

The @ symbol indicates an annotation. Annotations are a way for the
programmer to express to the compiler certain background information
about a method or a class that isn’t directly part of the code. For now, I
want to highlight one important annotation. Just know that any method
annotated with @Test indicates that a method is a test.

camelCase

When a class, variable, or method consists of more than one word, you
use an uppercase letter to indicate the new word. This is called
camelCase, because the “humps” from the upper case letters make the
words look like camel humps. In some other programming languages,
multiple word names are separated with underscores, but in Java
“camelCase” is used instead.

22

Java for Passionate Developers

Object Oriented Language

Each programming language has a design in mind for its structure. Java is
an object oriented language. That is, everything in Java is focused around
objects. A clever Java programmer works towards fully understanding the
problem and translating his theoretical model into objects and classes that
help him achieve his goals.

The main purpose in writing a program is to solve a problem in the most
concise way possible. The better job a programmer does, the easier the
code will be to maintain, the faster the program will run, and the fewer
errors the program will have.

Java’s power comes from the idea that a model takes names and
concepts from the real world, allowing programmers to communicate
easily with less code-savvy clients. While you might be thinking about the
code behind your Car class, your client might be thinking of a real car, but
both of you will understand each other.

23

Java for Passionate Developers

Chapter 3
Writing Your First Java Program

Writing a Test

Whenever you write a program, you start by writing a test. Tests are
extremely useful for a variety of reasons. A test allows the programmer to
properly think through his idea, which will result in a cleaner final result.
The test also serves as a formal definition of what needs to be done, and
can be used for discussions with the client, before a single line of code for
the program has been written. It gives a programmer the chance to ask the
client: “Is that what you actually need?”

Another reason to write tests is that it will help in writing cleaner code. A
test gives an external view on your program – if your code is difficult to
use, you will experience the pain yourself, and this will make you refactor
and improve it. When this happens to me, I usually say: “The test speaks
to me”.

Last, but not least, for every refactoring or new feature added to the code,
the test acts as a safety net. Ideally, whenever you change code an
automated test should run and should fail if you introduced a bug. The test
can show you the exact code line that “broke” the test, so you can instantly
move in the right direction towards fixing the bug. A failing test is usually
visualized as a red bar, and a passing test as a green bar, so we often
speak of “green” and “red” tests instead of “passing” and “failing” tests
respectively.

24

Java for Passionate Developers

PersonTest

We write our code in our program editor “IDE” - the short form for
“integrated development environment”. There are a variety of IDEs for
Java and each has its own specific functions. Generally, they act as
editors for your code, highlighting different keywords, pointing out errors,
and assisting you in your coding. An IDE is extremely useful and makes
every step of the programming process easier for the programmer. For
example, they help programmers by completing lines of code,
automatically creating package structures, and auto-importing packages
when they are used. However, I think that an IDE is a crutch for those who
are learning to code. It doesn’t allow you to completely understand what
you’re doing and how you’re doing it and if at some point you can’t use an
IDE, you wouldn’t be able to function without it. For that reason, I’d
recommend you start coding by using a simple text editor and compiling
from the console until you’ve completed the first twenty chapters of this
book. This will allow you to focus on learning the key aspects of Java
without the assistance of the IDE.

Now that I've explained why we should write a test, and where we write
our code, let's start to actually code! In Example 1 below, I've navigated to
a PersonTest class that I just created.

25

Java for Passionate Developers

Example 1

If you look back at Example 1 above, the test classes are all in a folder
structure “src/test/java”, and the non-test code will be stored in
“src/main/java”. A package name is basically identical to a folder structure,
but Java gives the latter a special meaning. So our package name of
“com.marcusbiel.javaBook” will end up in a folder structure of
“com/marcusbiel/javaBook”. Remember, the folder structure must be
identical to the package name in the Java class. Java will check that!

Now, back to our class. We have to start with our package declaration. For
our package structure to match the folder structure explained above, we
have to declare our package, com.marcusbiel.javaBook at the top of
our class. To end the statement we have to put a semicolon. Here’s how it
looks all together:

1 package com.marcusbiel.javaBook;

Example 2

Next I define my class, which is called PersonTest. I do this by first
typing public, followed by class, and finally the class name PersonTest.
Then I add opening and closing curly braces. Between the curly braces is
where you write your code.

26

Java for Passionate Developers

1
2
3

30
31

package com.marcusbiel.javaBook;

public class PersonTest {
 [...]
}

Example 3

@Test and our test method

According to the JUnit 4 documentation, the annotation @Test tells JUnit
that the “public void” method to which the annotation is attached can be
run as a test case. If we run the test and the test condition is not met, the
test will fail.

To use the JUnit @Test annotation we import it first, as you can see in
Example 4 below:

import org.junit.Test;

Example 4

As stated above, a Junit 4 test method must be “public void”, and must not
accept any parameters. Apart from that, we can freely choose any name
for the method that we like. Generally, while testing, focus on what your
program should do, not on how this is done. This can be encouraged by
following a very simple rule: start the name of your test method with
“should”, followed by what you expect the method to do, from a client’s
perspective.

In our case we’ll call our test method shouldReturnHelloWorld.
“Hello World” is a running gag in the world of programmers where the
first program that you write in any language should always return “Hello
World”. Needless to say, my book isn’t going to break that rule :).

27

http://junit.sourceforge.net/javadoc/org/junit/Test.html

Java for Passionate Developers

Finally, above our test method we add the annotation @Test to tell JUnit
that this method is a test case, as explained above. Here’s what our code
looks like at this point:

1
2
3
4
5
6
7
8

11
12
13

package com.marcusbiel.javaBook;

import org.junit.Test;

public class PersonTest {

 @Test
 public void shouldReturnHelloWorld() {
 [...]
 }
}

Example 5

Variables

Ok, let’s start writing the test! In this test we expect a Person object to
return “Hello World” to us. In Java, plain text like “Hello World” is a
specific type of data called a String. So in this test method, we’re
expecting to receive a String “Hello World”. We haven’t actually written
any code for the Person object to do this, but we’re starting in reverse by
starting with a test, so you can assume that the Person class is done,
even though your compiler will tell you that it’s not.

For this Person we’ll create a variable. We need a name for our variable.
I’m going to call mine marcus. So to create the variable, we call the
constructor, create the object of type Person in the memory, and assign it
to the variable marcus, as you can see below:

28

Java for Passionate Developers

1
2
3
4
5
6
7
8

☒9
10
11
12

package com.marcusbiel.javaBook;

import org.junit.Test;

public class PersonTest {

 @Test
 public void shouldReturnHelloWorld() {
 Person marcus = new Person();
 }
}

Example 6

In Example 6 above you can see that the Person class on line 9 is
underlined with red dots. This is because our Person class hasn’t been
created yet, but we’ll take care of this later. Like I talked about above, this
is a central part of writing a test. We’re first going to create our test, in full,
and then after that we’ll create the classes and methods necessary to
make it pass.

assertEquals

We can check that the method is returning “Hello World” with the help
of the static JUnit assertEquals method. We import this method by
adding the assertEquals method below our other import statement, as
you can see in Example 7. This is a special kind of import called a static
import, which I explain in this chapter.

import static org.junit.Assert.assertEquals;
Example 7

The assertEquals method expects two arguments. The first value is the
expected value, the second value is the actual value. The expected and

29

Java for Passionate Developers

actual values must be equal, otherwise the assertEquals method will
throw an error and the test will fail.

As the first argument, we put the String “Hello World”, as this is what
we expect our helloWorld method to return. As the second argument,
we directly put the helloWorld method call, as it will return the actual
value. Here’s what this looks like all put together:

1
2
3
4
5
6
7
8
9

10
☒11
12

13
14
15

package com.marcusbiel.javaBook;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class PersonTest {

 @Test
 public void shouldReturnHelloWorld() {
 Person marcus = new Person();
 assertEquals("Hello World",

marcus.helloWorld());
 }
}

Example 8

Currently, the code shown in Example 8 still won’t work because we
haven’t implemented the class Person yet. We also still haven’t created a
helloWorld method since we haven’t created the class. So now, let’s
create this class and the method. Since this is a method of type String, it
must return a String. So in this case, our Person class will return the
String “Hello World”. In the previous chapter I mentioned the
difference between command methods and query methods. This
helloWorld method is the first query method we have written. It doesn’t
change the state of the Person class, however, it returns something. Take
a look at our Person class so far:

30

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

package com.marcusbiel.javaBook;

public class Person {

 public String helloWorld() {
 return "Hello World";
 }
}

Example 9

Now if we execute our test, we get a green bar, so the test passed
successfully! This proves that we have correctly implemented our first
working code! Hooray :).

31

Java for Passionate Developers

Chapter 4
Debriefing

For review purposes, let’s go back to our development environment and
take a look at what we’ve learned already. Firstly, when we write our Java
Class, the first line of our program is the package declaration. Usually it’s
the domain name in reverse order. While it’s not mandatory to declare the
package, I recommend that you always do it.

1 package com.marcusbiel.javaBook;

Example 1

After the package declaration, we have our import statements. In this
chapter, we’re going to create a new Name class inside the subpackage
‘javaBook.attributes’. Since this class is in a different package and
we want to use it in our main class, we’ll import it using the statement
shown below in Example 2. Please note, I’m creating the Name class in a
separate package for the sole purpose of demonstrating import
statements.

I’d like to take some time to discuss import statements in a bit more detail.
We’ve already discussed that we need an import statement is when we
are using an Object from a class. When we import the class, we import the
full class name, which includes the package name, followed by the name
of the class. Here’s an example:

32

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;

 public String helloWorld() {
 return "Hello World";
 }
}

Example 2

There’s also another way that we can create instance variables of class
Name. When we create our instance variable, we can include the full class
name appended by the name of our variable. We wouldn’t need to import
the class if we did this:

1
2
3
4
5

6
7
8
9

10
11

package com.marcusbiel.javaBook;

public class Person {

 private com.marcusbiel.javaBook.attributes.Name

personName;

 public String helloWorld() {
 return "Hello World";
 }
}

Example 3

Firstly, from a readability standpoint, Example 3 is barely readable. On top
of that, while you may not see any difference in this one line, having to

33

Java for Passionate Developers

repeatedly use the full class name to create instance variables is much
longer to type out repeatedly.

The only time when you have to use the full class name rather than an
import statement is when you have two different classes with the same
short name, but the two classes are from different packages. For example
if you had our class “com.marcusbiel.javaBook.attributes.Name”, but you
also needed to use a class “com.marcusbiel.javaBook.Name”, you
wouldn’t be able to import both classes. So you can import one and use
the full class name for the other.

Next we have our class definition, public class Person, followed by
opening and closing brackets. The opening bracket defines the beginning
of the code for the class, and the closing one marks the end. The keyword
public means that any class in the same package, or in any other
package for that matter, can see this class. Just like this Person class can
see the Name class, that Name class is able to see the Person class.

Now, inside the Person class, we’ll define a reference variable
personName which is of type Name. To make this reference variable
inaccessible to other classes, we define it as private. But since we want
this field to be accessible to other classes, we’re also going to create a
public method name()which is easily accessible and will return this
reference variable personName. Any class that wants to access the
personName variable will have to call the name() method.
There is no naming convention for this method, so we can name it
whatever we want. The name()method’s implementation should contain a
return statement that returns the personName variable.

34

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;

 public String helloWorld() {
 return "Hello World";
 }

 public Name name() {
 return personName;
 }
}

Example 4

We also have the helloWorld() method from our last iteration of the
Person class. If you remember, we already have a class called
PersonTest from our last chapter, where we defined the helloWorld()
method as one of the arguments in an assertEquals() method.

Defining this test method gives us an opportunity to think about a good
design for our program. Once we execute the Test class and the code has
been correctly implemented, we should get a green bar that means our
test case executed successfully.

Example 5

While testing, we are always focused on the green and red bars. The
green bar means that our test passed and the red bar means that our test

35

Java for Passionate Developers

failed. You should also note that in the PersonTest class, I used the
@Test annotation and the static keyword in the import statement of the
assertEquals() method from the JUnit library. I won’t go into much
detail about this now, but it will be covered in a later chapter. For your
reference, here is the PersonTest class:

1
2
3
4
5
6
7
8
9

10
11

12
13
14

package com.marcusbiel.javaBook;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class PersonTest {

 @Test
 public void shouldReturnHelloWorld() {
 Person marcus = new Person();
 assertEquals("Hello World",

marcus.helloWorld());
 }
}

Example 6

36

Java for Passionate Developers

Part 2

Basic Concepts

37

Java for Passionate Developers

Chapter 5
Instances and Constructors

Instance Members vs. Static Members

As you can see below, I have created a class Person, and within that
class we have an instance variable called personName and an instance
method called helloWorld(). Our variables and methods are called the
instance members of the class.

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;

 public String helloWorld() {
 return "Hello World";
 }
}

Example 1

So what is an instance? An instance is a single occurrence of an object.
While there is only one class, there can be many instances of the class:
objects. For example, we can have hundreds and hundreds of different

38

Java for Passionate Developers

Person objects. Each Person object has its own instance of the
personName object, each with its own value and its own version of the
helloWorld() method. Besides instance variables and methods, there
can also be static ones. All instances of a class share the static
variables and static methods of the class.

Non-local variables and methods are also called “members”. A member
that belongs to the instance, is called instance member; a member that
belongs to the class (a static variable or static method) is called
class member.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;
 private static Planet homePlanet;

 public static String helloWorld() {
 return "Hello World";
 }
}

Example 2

If we change the homePlanet value for one instance of Person, all of the
other instances will have their values changed as well. This is an
advanced topic that will be discussed later in more detail. For now, just
know that without the static keyword, our methods and variables are
instance variables and methods.

39

Java for Passionate Developers

Example 3

Constructor

The next thing we will do in our program is write a constructor for our
Person object. I’ve mentioned constructors before, but in this chapter I
will go into more detail.

A constructor is used to initialize objects. It looks and acts very similarly to
a method. However, a constructor does not “return” a value in the normal
sense – once called, it “constructs” an instance of the class it belongs to.
Hence, a constructor does not define a return value, not even void. Also,
there is only one valid name for a constructor – the short name of the
class. It is followed by parentheses that, just like a method, may contain a
set of parameters. You can have as many constructors as you want in a
class, but each constructor needs a unique set of parameters. The
constructor body (the space between the opening and closing curly
braces) may be used to set up all the object’s attributes into a valid state.

As I explain in this chapter, each attribute has a default value. For
objects, that is null, basically a “reference to nowhere”. Further, you
can also statically initialize attributes directly in the same line where you
declare them. One way or the other, you must ensure that, once the

40

Java for Passionate Developers

constructor is executed, your object is in meaningful state, ready to be
used. If you fail to do so, evil things may happen.
For example, consider a car object without an engine set up. Once you
aim to start the engine, your entire program will crash. This advice is
contrary to a lot of what you will read in other tutorials – often you will
read about providing setters to set up your object after it has been
created. That has a lot of negative consequences. For instance, this is
not object oriented programming – it makes you think in data, rather than
behaviour. However, it is a more advanced topic and beyond the scope
of this chapter. You can read more about why getters and setters are
evil on my blog.

If you don’t write a constructor for your class, the compiler will implicitly
include an empty constructor without parameters. Note that the
parameterless, empty constructor added implicitly by the compiler is
called the default constructor. Strangely enough, a parameterless, empty
constructor explicitly written in code, is not called "default constructor".
Relying on the implicitly added default constructor is a bit problematic. If
you do (at a later time) add a constructor that does contain one or more
parameters, the default constructor will not be added by the compiler, and
existing code that relies on it will break. I refer to such automatic compiler
actions as “magic”, as they are not always clear and easily lead to
confusion. Therefore, if you need a parameterless, empty constructor, I
recommend that you always write it out explicitly. Never rely on the
compiler to add it for you. Unfortunately, this may lead to further confusion
about why you added a seemingly unnecessary constructor, so you should
also leave a comment documenting why you explicitly added the
parameterless, empty constructor. To give a concrete example: empty
constructors are often needed when certain frameworks are in use, like
Hibernate, for instance.

For our Person class, I'm going to create a constructor that sets the value
of personName given a value. If you look at the example below, I've
created two different variables called personName. One of them is the

41

https://marcus-biel.com/getters-and-setters-are-evil/
https://marcus-biel.com/getters-and-setters-are-evil/

Java for Passionate Developers

instance variable in the class, and one of them is an argument in our
constructor. To differentiate them, we have to add “this.” to the instance
variable personName. This way this.personName is set to the
personName received as an argument in the constructor.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;
 private static Planet homePlanet;

 public Person(Name personName) {
 this.personName = personName;
 }

 public static String helloWorld() {
 return "Hello World";
 }
}

Example 4

Since we’ve created a constructor, the compiler won’t automatically use a
default constructor. Now whenever someone calls the constructor to
create an object of type person, they have to include the personName
since that is the only constructor available to them.

If you remember from our test class from the last chapter, we constructed
our object without any arguments. If we try to execute this test again, it will
fail.

42

Java for Passionate Developers

Test Case Creation

As I’ve talked about before, a test method is annotated with @Test. This
annotation invokes the Test class from the JUnit framework and sets up a
test environment in our Java Virtual Machine (JVM). Let's create a second
method in our test class so that we can see a little more in-depth how our
test class works. In our test class, I’m going to create a second method,
shouldReturnHelloMarcus().

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17

18
19
20

package com.marcusbiel.javaBook;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class PersonTest {

 @Test
 public void shouldReturnHelloWorld() {
 Person person = new Person();
 assertEquals("Hello World",

person.helloWorld());
 }

 @Test
 public void shouldReturnHelloMarcus() {
 Person marcus = new Person();
 assertEquals("Hello Marcus",

marcus.hello("Marcus"));
 }
}

Example 5

Once I’ve created this method, I’m going to create an object of type
Person with an instance variable name of marcus. If we try to run this,

43

Java for Passionate Developers

we will get a compilation error as I noted earlier, because our
shouldReturnHelloWorld() method tries to create a Person object
with a parameterless constructor, which is no longer being generated
since we added the Person constructor that accepts a Name instance. As
you can see in Example 6 below, to get rid of this error, we’ll simply add a
parameterless constructor explicitly.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {

 private Name personName;
 private static String homePlanet;

 public Person(Name personName) {
 this.personName = personName;
 }

 public Person() {

 }
}

Example 6

Comments

As I said before, there might be confusion later as to why you created this
parameterless constructor (lines 14-16 in Example 6 above). You may
even forget the reason yourself, further down the line. Adding comments to
the code will prevent the confusion. They're ignored by the compiler so
besides denoting the comment itself, little syntax is required. Do remember
to use comments sparingly though, and never comment on the obvious. A

44

Java for Passionate Developers

variable person doesn’t need a comment that says “this is a
person”!

Instead, you should always aim to express your intent in the code itself.
For example, a method that adds two numbers that is called add() clearly
portrays what it does and probably doesn’t require a comment to describe
the method. There are a few exceptions to this rule, but generally, a
comment is used as a fix for bad code that doesn’t properly express its
intent. Comments can never be as precise as well-written code. Also,
while code is always up to date, a comment will usually end up being out
of sync with the code. Obsolete comments are really dangerous, and they
are often the cause for severe confusion. Therefore, I usually say,
"Comments lie" and I never completely trust a comment. Code can’t lie. 1
will always be 1 and 0 will always be 0. Code always does exactly what it
claims to do.

There are two types of comments you can define in Java: multi-line
comments and single-line comments. Multi-line comments start with /*
and end with */. Between these two symbols, you can write as many lines
of comments as you’d like.

A single-line comment starts with // and lasts for the remainder of the
line in the code. In general, I recommend that you always use multi-line
comments, because if a single-line comment is too long, it will be broken
up when the code gets auto formatted, which might happen quite often in a
development team.

To pick up from Example 6 again – assuming we would need an empty,
parameterless constructor because we are using the Hibernate framework,
we could add a comment to the constructor as you can see in Example 7
below:

45

Java for Passionate Developers

14
15
16
17
18

public Person() {
 /*
 * parameterless constructor, required by Hibernate
 */
}

Example 7

Concatenating Strings

Next, I am going to create the hello() method that we called in our test
class. It receives one argument, which is the name of the person we are
“saying” hello to.

In our hello() method we are returning a String. However, the
String we return will not always be the same. It will always start with
“Hello”, followed by the name of the person. We have to turn these two
separate String instances into one String that we return. This process
of “adding Strings together” is called Concatenation. To do this, we put a
‘+’ between the two Strings, creating one larger String. Now our method
will return “Hello” followed by the person’s name, as you can see in
Example 8 below. On purpose, I’ve left a bug in the hello method that
will cause our test to fail. See if you can find it!

14
15
16

public static String hello(String name) {
 return "Hello" + name;
}

Example 8

Testing our Code and Fixing the Bug

Now let’s execute our test. It failed as expected. The reason is that there is
a mismatch between our expected value which was “Hello Marcus”

46

Java for Passionate Developers

and the actual value, “HelloMarcus”. When we concatenated our two
Strings we forgot to include a space between them!

This demonstrates the great value of tests quite clearly. Programs written
in Java often have 100k to 100 million lines of code – some even more
than that! Unlike computers, humans get tired easily, and we do make
mistakes. Errors like these can have disastrous consequences, from
billions of dollars lost when a trade system goes berserk, to human lives
lost because of a space shuttle miscalculation. Therefore, you must
always write tests. Tests act as the formal specification of the program. A
program without unit tests is a program without a formal specification, and
that is worthless in the best case and harmful in the worst.

Okay, let’s go back to our failing test. To make it pass, we have to add a
space after the word “Hello”, as demonstrated in Example 9 below.

14
15
16

public static String hello(String name) {
 return "Hello " + name;
}

Example 9

With that done, when we execute our test again, it’s green and we have
successfully applied String concatenation for the first time!

47

Java for Passionate Developers

Chapter 6
Access Modifiers

There are four access modifiers that exist in Java, three of which I will
cover here: public, private, and default. The fourth modifier is
protected, which is related to a more advanced topic (inheritance), so I
will skip it for now. There are also many non-access modifiers. For now, I
will only be focusing on the static modifier.

The Public Access Modifier

The public modifier signifies that a method, variable or class is accessible
from any other class. For example, the Person class that we’ve used in
previous examples can access and use the Name class because the Name
class is public. Please note that I’ve placed the Name class in a separate
package for demonstration purposes only.

1
2
3
4
5
6
7
8

package com.marcusbiel.javaBook;

import com.marcusbiel.javaBook.attributes.Name;

public class Person {
 private Name personName;
}

Example 1

48

Java for Passionate Developers

The Private Access Modifier

The private modifier signifies that the method or variable is only
accessible from the class where it was declared. Make all variables and
methods private until you absolutely need to make them public. This
is very important, especially for variables. You don’t want other classes to
poke around in your Person class and have them changing your Person
object’s name whenever they feel like it. Generally, if you want to expose
some variables to outside classes, you should not make the variables
public. This allows outside classes to not only see them, but also modify
them without any restrictions.

A Data Centric Approach

A commonly used alternative to making all your attributes public, is to
provide so-called public “getter and setter” methods, that allow other
objects to directly access and change your private attributes. This
approach is taught as “object oriented programming” by many Java books
and courses. To me, this always felt like having a locked door, with a key
and a note saying, “Please don’t open this door” stuck on it. It took me
many years to realize that I wasn't the only one who was confused, but
that actually all those “smart books” and teachers were wrong! Don’t let
them fool you! It is fallacy to believe that you can effectively encapsulate
a class while still providing public methods that allow one to directly
operate on its internals. (For more details, read my blog post about why
getters and setters are evil). Avoid this data-centric approach.

An Object Oriented Approach

Instead, use an object-oriented approach. Focus on providing functionality
from a business point of view, independent of the internal details of a
class.

49

https://marcus-biel.com/getters-and-setters-are-evil/
https://marcus-biel.com/getters-and-setters-are-evil/

Java for Passionate Developers

When designing your class, put yourself in the shoes of someone who will
have to use your class. Make it as simple as possible for the caller to use
the class’s methods. To achieve this, focus on what the class should do,
and not on how this will be achieved.

After careful consideration, offer only a small set of well defined public
methods, independent of the internal details of a class. Generally, less is
more. The less the client “knows”, the more flexible your code stays -
every method that is not public can easily be changed, without affecting
other code.

As an analogy, a house also has a well defined number of doors, and they
are usually closed. The house owner decides if, when, and how he wants
to open them. For example, he’s not going to open the safe door when a
delivery person comes to the door, but he might open the front door for the
person, so they can carry his package inside.

See every public method as an open safe door; as a potential threat to
your class.

Finally, you should also always validate incoming arguments. If the
package the delivery person brought was supposed to be a new book, but
it was ticking, the house owner probably wouldn't let it come inside. The
same goes for your public methods. As a Software Craftsman, you must
make sure that each class doesn’t cause harm to the system, even when
it’s used beyond its intended purpose.

I will continue to talk about these object-oriented principles throughout the
book as they are very important to good code design.

The Package-Private Modifier

The third modifier I’m going to discuss is the “package-private” modifier. It
is also called the “default” modifier, because this modifier is never

50

Java for Passionate Developers

declared. Instead, it is used as a fallback when no other visibility modifiers
are declared.

A class, method or variable with this visibility is accessible from the
package in which it is declared, but from nowhere else. In other words,
for classes that reside in the same package as a package-private class,
it’s as though the class is public; however, for classes belonging to other
packages, a package-private class acts as though it was a private
class.

1
2
3
4
5
6
7
8

package com.marcusbiel.javaBook.attributes;

class Name {
 /*
 * Package-Private Modifier for Class Name
 */
}

Example 2

This modifier is only sparsely used by Java developers, without good
reason. Generally speaking, use the default level modifier whenever you
need classes of the same package to use a method, but you don’t want
classes outside of this package to use the method. For example, imagine
a class Car has a method diagnose that you want a class Mechanic of
the same package to be able to use. But the sales-oriented car company
you are coding for doesn’t want class Customer to fiddle around with this
method, because that would hurt its earnings.

In my opinion there is a flaw in the package-private modifier: Since there is
no keyword, it is unclear whether a missing modifier is an error on the part
of the programmer, or a planned package-private modifier. If you forget to
put a modifier in, you are going to cause issues for your program down the
road, but you won’t know. There will be no warning from the compiler that
there's a "missing modifier", since it is legal coding practice to leave it out.
If you had wanted your class or members to be public, when you try to

51

Java for Passionate Developers

access them outside of the package you can’t. Even more dangerous, is
when you’ve forgotten to set a private modifier and months later, your
method or variable is used somewhere else, without your noticing.

On the other hand, if you intended to use the package-private modifier,
you’re intentionally leaving the visibility modifier out. Another programmer
might not realize this and try to “fix” your code by adding in a modifier that
they assume you wanted. That’s why I recommend that if you are on
purpose using the package-private modifier (which in some cases is very
useful), then leave a comment denoting your intent.

Coding Example

Now that you know about visibility modifiers, let’s apply them to a coding
example. First, we are going to create a new @Test method in our
PersonTest class. This method will be called
shouldReturnNumberOfPersons and will contain three objects of type
Person named “person1”, “person2”, and “person3”.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

package com.marcusbiel.javaBook;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class PersonTest {

 @Test
 public void shouldReturnNumberOfPersons {
 Person person1 = new Person();
 Person person2 = new Person();
 Person myPerson = new Person();
 assertEquals(3, myPerson.numberOfPersons());
 }
}

Example 3

52

Java for Passionate Developers

Next we’re going to use an assertEquals() method to check if the
number of Person objects created is equal to 3.

Let’s begin to write the code to make this method work in our Person
class. In our Person class, I’ve created an instance variable of type int
called personCounter. Then, in the default constructor, we will add 1 to
personCounter each time this constructor is called. Logically, every time
a Person is created this constructor is going to be called, so if we add 1
to personCounter each time the constructor is called, we count the
number of Person objects we have created. We never initialized
personCounter, but this should still work because the default value for
an int is 0. (If you’d like to learn more about default values, you can take
a look at this chapter).

6
7
8
9

10
11
12

public class Person {
 private int personCounter;

 public Person() {
 personCounter = personCounter + 1;
 }
}

Example 4

As an added note, there are actually three ways to add 1 to
personCounter. The first is the way we did above. The second is:

personCounter += 1;

Example 5

which can increment personCounter by any value we wish. The third
option is the shortest, but only works if you want to increment by 1:

53

Java for Passionate Developers

personCounter++;

Example 6

All three of these options take the value of personCounter, increase it
by 1, and then store that new value in a new version of personCounter.
Now let’s write our numberOfPersons() method to return
personCounter:

34
35
36

public static int numberOfPersons() {
 return personCounter;
}

Example 7

If we execute this code, our test fails because our
numberOfPersons()method returned 1. Can you guess why?

Each time we created a new Person object, we stored the object and all
its values into a separate person variable. Therefore, each time we
create a new object, all of its instance variables are reset by the
constructor and stored as part of a new object. So for each of our Person
objects, the value of personCounter got initialized to 0, and then
incremented by 1.

The Static Modifier

This brings us to our solution, the static modifier. As you might
remember from the last chapter, the static modifier associates the
method or variable with the class as a whole instead of with each
individual object. Normally if you create a hundred Person objects, each
will have its own personCounter variable, but with this modifier, all one
hundred objects will share one common personCounter variable. This
way, our personCounter will retain the same value, no matter how many
Person objects we create.

54

Java for Passionate Developers

First, we add this modifier to our personCounter variable and we’re also
going to add it to our numberOfPersons() method, as we should never
have an instance method return a static variable and vice versa.

6
7
8
9

10

34
35
36
37
38

package com.marcusbiel.javaBook;

public class Person {
 private Name personName;
 private static int personCounter;

 [...]

 public static int numberOfPersons() {
 return personCounter;
 }
}

Example 8

By making the method and variable static, we can now accurately count
and return the number of Person objects created. Our variable is
associated with the class, and since it can’t be accessed due to the
private tag, we have the public method numberOfPersons() which
allows outside code to access, but not modify, the value of
personCounter.

55

Java for Passionate Developers

Chapter 7
Development Tools

Java IDEs

Let’s start with something that I’ve discussed before, our Integrated
Development Environment or IDE. The three most popular IDEs are
Eclipse, IntelliJ IDEA, and Netbeans, in that order. Eclipse is free and
open source, so it is very popular, especially among companies. I have
been using Eclipse since 2002, but it’s starting to fall behind other major
IDEs. I’m using this course as an opportunity to show off IntelliJ IDEA,
which is becoming more and more popular. From what I’ve seen, IntelliJ
IDEA is much more powerful compared to Eclipse, and unlike Eclipse,
doesn’t require additional plugins to allow you to start using it. Also,
Eclipse has many bugs that are frustrating to deal with and is infrequently
maintained.

Finally, NetBeans is another free IDE that is also popular in corporate
software development. It has great autocomplete and autoimport features.
These three and many others are all valid choices, and I always feel that
each individual should pick the IDE they are comfortable with. In my
opinion, a seasoned developer should be at least somewhat familiar with
all three. Here are the download links for the three IDES:

Eclipse
https://eclipse.org/downloads/

IntelliJ IDEA
https://www.jetbrains.com/idea/download/

56

https://eclipse.org/downloads/
https://www.jetbrains.com/idea/download/

Java for Passionate Developers

NetBeans
https://netbeans.org/downloads/

Testing Frameworks

Next, let’s talk about the different options for creating Tests. In all the tests
I’ve used so far, I’ve used JUnit, which is a testing framework. Frameworks
are a set of classes bundled together. JUnit is open source and free,
making testing really easy. Most IDEs also have it preinstalled which
makes it the most easily available choice.

Another Testing Framework is TestNG, which is very similar to JUnit.
IntelliJ IDEA and Eclipse actually support both testing frameworks, so you
can easily try both, but I’m not going to go into more detail about using
TestNG, purely out of preference.

Maven

Another program I’d like to talk about is Maven. Maven is a build
management tool; as the name implies it manages your build. Basically, a
build is the process of turning your program into one file. Imagine that your
program consists of hundreds of classes that you need to release or send
to a client. You don’t want to send each file separately, so you gather
them in a package and turn that package into a single file. Before the
original build management tool Unix’s make, this was a manual task
requiring various scripts to compile software, but now we have tools like
Maven to do it for us! There are other build tools, but for this book I’m
using Maven.

I highly recommend that you also read through the documentation on the
website to understand how Maven works.

57

https://netbeans.org/downloads/
http://junit.org/junit4/
http://testng.org/
https://maven.apache.org/

Java for Passionate Developers

Text Editors

The final thing I’ll talk about in this chapter is text editors. I’ve mentioned
before in the book that you should start learning Java with a text editor. An
IDE is great for a seasoned developer; it provides many features that can
greatly assist programmers, such as warnings and error highlighting in
your code, automatic code completion and tools to help with code
refactoring. However, it also acts as a crutch and causes a beginner to
avoid actually learning many things that they should at least be aware of
while coding. Using a text editor, you can write code, save it, and build
your project in the console, which is really all you need if you're learning
Java for the first time.

For Windows, I recommend that you use Textpad. It is very simple to use,
yet very powerful. For all other operating systems, use Sublime. Both offer
features like code highlighting and advanced search and replace features.
Again, I recommend that you use one of these text editors throughout this
book as it’ll help you retain more Java and focus on writing high quality
code.

58

https://www.textpad.com/
https://www.sublimetext.com/

Java for Passionate Developers

Chapter 8
Booleans and Conditional

Statements

Booleans

A boolean is a primitive data type that stores one of two values, true or
false. The name comes from the inventor, George Boole who discussed
the idea of a boolean in great detail. In Java, we can use booleans to
create conditions and execute blocks of code based on those conditions.
To illustrate this idea, imagine a situation that most of us experience every
day. When your alarm goes off in the morning, whether or not you went to
sleep early could cause you to decide between getting up or pressing the
snooze button. Whether you went to sleep early could be considered a
boolean value, but for the code to decide which of these two actions you
should respond with, you need conditional statements.

Conditional Statements

Conditional statements define conditions that are true or false and then
execute based on whether or not the condition is true. Basically,
conditions say, “If x is true, then execute y”. This logic is called an
“if-statement”. Throughout all programming languages this if-statement is
the most powerful and important statement, because it allows a program to
execute differently every time. For the sake of demonstration, if we created
a boolean isMonday and a boolean isRaining, and set them both to

59

https://en.wikipedia.org/wiki/George_Boole

Java for Passionate Developers

true, we could then have an if-statement that checks this and then calls
drinkBeer(), if both of them are true. After all, what else would you
do on a rainy Monday? ;-)

1
2
3
4
5
6
7
8
9

@Test
public void demonstrateBoolean() {
 boolean isMonday = true;
 boolean isRaining = true;

 if (isMonday && isRaining) {
 drinkBeer();
 }
}

Example 1

Checking if both conditions are true is done using the “&&” symbol. If
both conditions are true, then the drinkBeer()method will execute. We
could also check if only one of the conditions are true:

10
11
12
13
14
15
16
17
18

@Test
public void demonstrateBoolean() {
 boolean isMonday = false;
 boolean isRaining = true;

 if (isMonday || isRaining) {
 drinkBeer();
 }
}

Example 2

The if-statement in Example 2 says, “If it’s Monday or it’s raining, then
drink beer”. The ||, called a pipe operator, defines an OR operator. Now,
if it is raining or it is Monday, the drinkBeer()method will be executed.

60

Java for Passionate Developers

Short Circuiting

One interesting aspect of compound if-statements is the idea of short
circuiting. As we discussed previously, in an AND operator, if both
conditions are true, the drinkBeer() method will execute. However, if
the first condition is false, the if-statement will “short circuit” and will not
execute the code without checking the second boolean. If the boolean
isMonday was true and the boolean isRaining was false, you
would excitedly note that it’s Monday, but since it wasn’t raining you still
couldn’t drink beer.

The same is true for a OR operator. If the first condition is true, then
checking the second condition is unnecessary, since the code inside the
conditional will execute whether or not the second condition is true.

Complex If-Statements

Our “if-statements” can also be made much more complex by
compounding various conditions. The logic works by evaluating conditions
in multiple levels of parentheses and then evaluating conditions in only
one set of parentheses. The logic also checks conditions from left to right.
Before you read on, see if you can figure out if the drinkBeer() method
will execute in Example 3.

61

Java for Passionate Developers

10
11
12
13
14
15
16
17

18
19
20

@Test
public void demonstrateBoolean() {
 boolean isMonday = false;
 boolean isRaining = true;
 boolean isTuesday = true;
 boolean isSunny = false;

 if ((isMonday && isRaining) || (isTuesday &&

isSunny)) {
 drinkBeer();
 }
}

Example 3

Ok, let’s look at the first condition, “isMonday && isRaining” - that’s
false. After that you can see that we have a OR operator in between the
two sets of conditions, so the if-statement must check the second
condition. So let’s do that: “isTuesday && isSunny”. This is also
false, because it is Tuesday, but it isn’t sunny. Since neither condition is
true, the entire statement is false and we can’t drink a beer ;-)

Until you fully understand "boolean algebra" and have mastered using
conditionals, continue using parentheses to enforce the order of execution
you need safely. In short, a conditional is interpreted as follows:

1. Any conditionals inside parentheses
2. Any AND symbols
3. Any OR symbols

Unless you feel very comfortable with conditionals, you should surround all
of your conditions in parentheses just to be safe.

62

Java for Passionate Developers

The Else Statement

Now I’ll introduce you to the counterpart of the “if-statement”: the “else
statement”. Let’s say it’s not Monday, so we can’t drink beer, but we still
need to stay hydrated. We could say, “If it’s Monday, drink beer; otherwise,
drink milk.”

10
11
12
13
14
15
16
17
18
19

@Test
public void demonstrateBoolean() {
 boolean isMonday = false;

 if (isMonday) {
 drinkBeer();
 } else {
 drinkMilk();
 }
}

Example 4

You might notice that the “else statement” doesn’t have a condition. This is
because the “else” executes in all cases where the “if” case doesn’t apply.

The Else-If-Statement

If I were you, I’d get bored with drinking milk six days a week. But at the
same time, I don’t want to drink beer more than once a week. This is
where the final conditional statement comes into play: the “else-if”
statement. The else if evaluates a condition if the if-statement is
false. You can also have multiple “else ifs” that execute if all previous
statements are false. At the end of all these statements, you can have
your “else” statement that still executes in all other cases, meaning that all
of the other statements were false. Let’s take a look at an example
where on Fridays we drink water:

63

Java for Passionate Developers

10
11
12
13
14
15
16
17
18
19
20
21
22

@Test
public void demonstrateBoolean() {
 boolean isMonday = false;
 boolean isFriday = true;

 if (isMonday) {
 drinkBeer();
 } else if (isFriday) {
 drinkWater();
 } else {
 drinkMilk();
 }
}

Example 5

Using Conditionals with Other Primitive Data Types

Not only can we use conditional statements to check if a boolean variable
is true or false, but we can also create a boolean using a condition, and
evaluate that. For example, we could have two ints, i and j with the values
4 and 3 respectively. We can compare them using the following symbols:

Symbol Meaning

> Greater Than

< Less Than

>= Greater Than or Equal

<= Less Than or Equal

== Equal

!= Not Equal
Example 6

64

Java for Passionate Developers

You may notice that the operator for equals is a double ‘=’ operator, rather
than a single ‘=’. This is because ‘=’ already has a use: it is used for the
assignment of values to primitive data types and for assigning Objects to
reference variables. Therefore, to avoid confusion for both the programmer
and the compiler, == is used to compare equality.

‘!=’ means ‘not equal’. Generally, ‘!’ in front of any boolean value will
negate its value. So it follows that we'll read, ‘!true’ as ‘not true.’, which is
equivalent to false. We read ‘!false’ as ‘not false’, therefore it will be
equivalent to true.

If you take a look at the example below, you can see different ways that
conditionals can be used to compare values. Obviously, since we know
the values assigned to i and j, this isn’t very helpful, but if these values
were dynamically given as a method parameter, then these conditionals
would be useful.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

@Test
public void demonstrateBoolean() {
 int i = 4;
 int j = 3;
 boolean areEqual = (i == j);
 if (i > j) {
 /* i is greater than j */
 } else if (!(i >= j)) {
 /* i is not greater than or equal to j */
 } else {
 /* i is equal to j */
 }

 if (areEqual) {
 /* i is equal to j */
 } else {
 /* i is not equal to j */
 }
}

Example 7

65

Java for Passionate Developers

Applying Conditionals

You may not have the skills to create more complex conditional
statements yet, but you can still apply conditionals to some useful
examples. Let’s say we have our values of i and j, but now we want to
increase the value of j if it is Monday. We won’t be incrementing in every
case; we only do this if our condition is met. We can do other things too, all
of which might be useful under certain conditions.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

@Test
public void demonstrateBoolean() {
 int i = 4;
 int j = 3;
 boolean isMonday = true;
 boolean areEqual = (i == j);
 if (areEqual) {
 i = 8;
 } else if (j > i) {
 j = i - 3;
 }

 if (isMonday) {
 j++;
 }
}

Example 8

Conditionals provide Java code with the means to respond differently
depending on different outside conditions. They are extremely flexible and
powerful tools that you will continue to use as you learn more and more
Java.

66

Java for Passionate Developers

Chapter 9
Basic Loops

Introduction

In this chapter I will discuss the use of loops in Java. Loops allow the
program to execute repetitive tasks or to iterate over vast amounts of data
quickly.

Background

Imagine that I want to send out an email to every subscriber of my
newsletter. Now, if I had to manually send an email to every single
subscriber, I would be kept busy for days. Instead, I want to write a
program that helps me do this. So I write a program like this:

10
11
12

9999

sendEmail(Tom);
sendEmail(Ben);
sendEmail(Christian);
[...]
sendEmail(Julia);

Example 1

For every new subscriber, I will have to extend my code and add a new
"sendEmail" call. This isn’t much better than my manual approach
before. To fix this, I want to group all my subscribers into a list and then tell
my computer to uniformly send an email to each subscriber on my list.

67

Java for Passionate Developers

That’s where “loops” come into play. They are a way to express, “I want to
execute this code 999 times”, for instance.

For-Loop

The first loop I will discuss is the “for-loop”. It is called a for-loop because it
tells the program, “Execute this loop FOR a certain number of times”. Our
for-loop has three sections. The first section assigns and defines a
variable, such as “int i = 0”. It uses this variable to iterate.

Note:
Generally, you can use any variable name, but one-letter variable names
are commonly used in this context. This, at first, might seem
counterintuitive and contradict the recommendation of using descriptive
variable names. “i” in this context is okay, because one letter variables
like ‘i’ or ‘j’ are commonly used for counter variables in for-loops. The
letter ‘i’ is specifically used because it stands for the word “index”. ‘j’ is
used in cases when you need two different indexes - just because ‘j’ is
the next letter in the alphabet after ‘i’. Finally, the length of a variable
name should be related to the length of the block of code where it is
visible. When you have a large block of code, and you can’t directly see
where this variable was defined, it should have a descriptive name.
For-loops, however, are preferably short - in the best case just spanning
over 3 lines of code - so “i” as THE index variable should actually be
very descriptive in this case, and any other name than “i” or “j” for a
simple index variable of a for-loop could actually even confuse other
developers.

The second section defines how many times we want to execute the code
inside the for-loop. In Example 2, we used ‘i < 4’. It is important to
remember that it is commonplace in programming to start index values
with 0, not 1. Since we want our code to iterate four times, we say ‘i < 4’
meaning that the code will execute when our ‘i’ value is 0, 1, 2, or 3.

68

Java for Passionate Developers

The last section defines the incrementation of our variable. It can either
increase the value or decrease it. In our example, we are increasing it by 1
using ‘i++’ which increases our ‘i’ value by 1. This occurs after the code
block inside the for-loop is finished. If we were to print out our ‘i’ values
inside the code of our for-loop, it would print ‘0,1,2,3’, not 4. ‘i’ would
increment to 4 after our code runs for the fourth time, but since that does
not satisfy the condition in the middle section of our for-loop, the code
inside the loop stops executing.

24
25
26
27
28
29
30
31

public void shouldReturnNumberOfPersonsInLoop() {
 Person person1;

 for (int i = 0; i < 4; i++) {
 person1 = new Person();
 }
 assertEquals(4, Person.numberOfPersons());
}

Example 2

To restate the logic of the for-loop, initially ‘i’ is assigned a value of 0.
After we execute our code inside the loop, ‘i’ is now incremented by 1, so
now it has a value of 1. The condition we wrote in the middle section
stipulates that ‘i < 4’ for our code to execute. Since that is evaluated to
be true, the code executes again, increments ‘i’ by 1 and keeps repeating.
The first time the condition evaluates to false is when ‘i’ has a value of 4.
At this point the loop is exited and we will have executed our code 4 times.

You can also increment by numbers larger than 1. Say we incremented
the previous example using “i = i + 2”, you would only create two
person objects. This is because we are now only going through the loop
twice, when i = 0 and i = 2.

One of the things you should watch out for when creating loops is the
possibility of an infinite loop. For example if our condition in Example 2 is

69

Java for Passionate Developers

“i < 1” and you continually decrease the value of ‘i’ using “i--”, the
loop will go on forever, create lots of objects, and eventually will probably
crash your PC. Each of the three sections of the for-loop is optional.
Technically, you could even leave all three sections blank and provide only
two semicolons. Be careful, though, because that way you would create a
loop that would never terminate (an “infinite loop”).

While-Loop

Our second loop is the while-loop. A while-loop allows the code to
repeatedly execute WHILE a boolean condition is met. The basic syntax
for a while-loop is shown below:

12
13
14

while (condition) {
 /* Code that executes if the condition is true */
}

Example 3

The while-loop is useful when you have a condition that is being
dynamically calculated. We could create the person object inside a
while-loop, by dynamically changing the value of a variable ‘i’.

28
29
30
31
32
33
34
35
36
37
38

@Test
public void shouldReturnNumberOfPersonsInLoop() {
 Person person1;
 int i = 0;

 while (i < 4) {
 person1 = new Person();
 i++;
 }
 assertEquals(4, Person.numberOfPersons());
}

Example 4

70

Java for Passionate Developers

In Example 4, we again create four person objects. Again, we start off with
‘i’ valued at 0 and increment it by 1 while ‘i<4’. When that condition
becomes false and i’s value is 4, the loop is exited.

Do-while Loop

The third type of loop we’ll look at in this chapter is the do-while loop. A
do-while loop executes the code at least once and then repeatedly
executes the block based on a boolean condition. It functions like a
while-loop after the first iteration, which happens automatically. In Example
6, we create the four Person objects using a do-while loop.

28
29
30
31
32
33
34
35
36
37
38

@Test
public void shouldReturnNumberOfPersonsInLoop() {
 Person person1;
 int i = 0;
 do {
 person1 = new Person();
 i++;
 } while (i < 4);

 assertEquals(4, Person.numberOfPersons());
}

Example 5

There is also a fourth type of loop, the for-each loop. The loop you should
choose depends on the logic you need. All four of the loops are equivalent
in terms of functionality, but each loop expresses the logic in a different
style. You should always try to use the loop that is easiest for someone
reading your code to understand and that makes the most sense in
context.

71

Java for Passionate Developers

Chapter 10
For-Each Loops

In this chapter I will be discussing the for-each loop. The for-each loop is a
simplified loop that allows you to iterate on a group of objects like arrays.

Array

The array is an extremely powerful tool that allows you to store multiple
objects or primitive data types in one place. You can read more about it in
the chapter dedicated to arrays. For now I'll just give you enough to
understand the for-each loop. As an example of an array, imagine an array
“persons” that internally holds an entire group of persons. Let’s see how
we can statically iterate over a persons array that can hold ten persons,
using a for-loop that I introduced you to in the last chapter:

9
10
11

for (int i = 0; i < 10; i++) {
 persons[i].helloWorld();
}

Example 1

Each iteration of the loop will increment the variable integer primitive i, that
will successively be used to access each element in the persons array.

As you can see, the loop is not easy to read or even to understand. Also,
we have to put the size of the array in the loop upfront. As we will see

72

Java for Passionate Developers

later, there is a better, dynamic way to get the array’s size, but that won’t
make it easier to read.

The For-Each loop

A for-each loop essentially works like a simplified for-loop. A for-each loop
uses a simpler, more readable syntax. It does all the dirty work behind the
scenes.

9
10
11

for (Person person : persons) {
 person.helloWorld();
}

Example 2

As you can see in Example 2, we don’t need to put in size of the persons
array. The for-each loop will conveniently retrieve it for us. Also, we don’t
need to index and fiddle around with array cells. For each iteration over
the array, it will retrieve the current person object for us, and we can
conveniently call the helloWorld() method on each Person object.

However, keep in mind that the simplicity of the for-each loop comes at a
price. There is no such thing as a free lunch! It is not as dynamic as a
for-loop, as it always indexes through every spot in the array. With the
counter variable “i” missing, you can’t look at every other cell, or every
third cell, or the first half of the cells. Of course - you could add an
additional counter variable - but that would render the benefit of the
simplified for-each loop useless. Don't even think about it!

The for-each loop is the perfect loop to use when you simply need to go
through every element of a container. Actually, this is the most common
use case for a loop, which makes the for-each loop the most commonly
used loop in Java!

73

Java for Passionate Developers

Chapter 11
Arrays

An array is a special type of object in Java. Imagine it like a container that
can hold a number of primitive data types or objects. It stores each one in
its own ‘compartment’ and allows you to access them by providing the
location of the ‘compartment’, called an index.

Let’s say we wanted to create an array of Person objects. You would do it
like this:

Person[] persons = new Person[4];

Example 1

The first part Person[] persons defines a Person-array reference
variable named persons. The second part, = new Person[4] creates a
Person-array object and assigns it to our reference variable persons. [4]
indicates that the array will be able refer to a maximum number of four
Person objects. You can't change the size of an array after you've created
it. So once you've initialized the array, that's it, it's stuck at that size.

When instantiating an array of objects,such as a Person array in our case,
you create one array object, acting as container, offering space to store
references to the actual objects.

After instantiation, your array will be empty. Each cell will contain null,
which means it is not referencing any object, as illustrated by Example 2. If
we tried to access the reference at this position we would get an error

74

Java for Passionate Developers

once we ran the program. As a side note, the proper term for an error like
this is an ‘exception’ (you can read more about Exceptions in Java here).

Example 2

Now, let’s fill our array. When we do this, we’re filling it with reference
variables to Person objects.

8
9

10
11

persons[0] = new Person();
persons[1] = new Person();
persons[2] = new Person();
persons[3] = new Person();

Example 3

Example 4

Syntactically, you could also put the square brackets of the persons array
variable after the variable declaration, as Example 5 shows you:

Person persons[] = new Person[4];

Example 5

The code in Example 5 is a flaw of the Java Programming Language and
it’s highly recommend never to do that. Reading the code is less clear -

75

Java for Passionate Developers

since if you only read part of the line, you could come to the wrong
conclusion that it creates a reference variable of type Person. Put the
square brackets directly after the Person class, to clearly indicate that
this is a reference variable of type Person array, and not Person.
We can also create an array to store a primitive data type like an int:

int[] numbers = new int[3];

Example 6

You are probably not used to seeing new in front of a primitive int.
However, this is syntactically correct; it creates an array object that can
hold three values of type int, and not a primitive type. However, while
an array of objects stores spaces for references, an array of primitives
stores the primitive values themselves. Therefore, after initialization, the
cells of the array will be pre-filled with 0, the default value for an int, and
not null, as Example 7 illustrates:

Example 7

Remember, whether it is storing object references or primitive data types,
an array is an object. Since arrays are objects, you can call methods on
them. For example, you can call myInts.toString()on the array in
Example 6. You can also access the array’s public attribute, length,
that tells you the static length of the array. You might remember that in a
previous chapter I talked about why you should make your instance
variables private inside a class when using an object-oriented
approach. This is yet another flaw in Java, a place where Java itself
unfortunately violates basic object-oriented principles.

76

Java for Passionate Developers

Multidimensional Arrays

You can also create a multidimensional array. A multidimensional array is
an array of arrays:

int[][] numbers = new int[2][3];

Example 8

Conceptually, you can visualize a two dimensional array as a table with
row and column indexes, as Example 9 illustrates:

Example 9

Each cell of the first array forms the rows of the table. Each row contains
yet another array, where each array forms the cells of each row. Arrays of
more than two dimensions are less common, but easily possible, as
Example 10 shows you:

Person[][][] persons = new Person[2][4][3];

Example 10

Multidimensional arrays are read from left to right, with each value acting
like a coordinate for each primitive value or object reference. The topmost
array in the hierarchy is the leftmost array. It is storing the arrays that are
referenced by the subsequent set of square brackets.

77

Java for Passionate Developers

Shorthand Notation for Arrays

Besides the way I explained it in Example 1, there is an alternate way to
create arrays. The most basic form of it is this:

Person[] persons2 = {};

Example 11

The code in Example 11 creates an empty array, with person2
referencing it. The curly braces surround every object that we are putting
into the array. This array is size 0, which isn’t really useful in any sense,
but technically it’s possible.

We can also use this method to actually fill an array without setting the
size. When you create the array, you put in as many objects and/or null
values as you want and that decides how large the array will be.

Person[] persons = new Person[3];

Example 12

Indexing in an array

Let’s return to the array of Person references that we created before. Let’s
fill it with person objects. First we have to index to the ‘compartment’ in our
array by putting its index value in square brackets like below:

persons[0] = new Person();

Example 13

Arrays start indexing at 0, so our four ‘compartment’ array has indexes at
0, 1, 2 and 3. We could, as we did in Example 3, create four references

78

Java for Passionate Developers

and assign them each to new objects. Alternatively, we can assign our
new reference variables to existing objects, or even to objects that other
cells of the array are referencing. Obviously, in such a simple example, it
might not be necessary to introduce these complexities, but I’m doing it to
demonstrate the concepts.

10
11
12
13
14
15
16
17
18

@Test
public void demonstrateArrays() {
 Person[] persons = new Person[4];
 persons[0] = new Person();
 persons[1] = new Person();
 persons[2] = persons[1];
 Person myPerson = new Person();
 persons[3] = myPerson;
}

Example 14

For Loops and Arrays

Loops and arrays are always a couple. For an array to be efficient it needs
a loop, and loops are well equipped to work arrays. Let’s say we wanted to
index through every single ‘compartment’ in our array and apply the same
code to each one. We can create a for-loop to do this for us. Our variable
i, will be used as the value for our index. Now, inside this loop, we could
create the objects of type person and access the objects.

10
11
12
13
14
15
16
17

@Test
public void demonstrateArrays() {
 Person[] persons = new Person[4];
 for (int i = 0; i < 4; i++) {
 persons[i] = new Person();
 person[i].helloWorld();
 }
}

Example 15

79

Java for Passionate Developers

Inside this loop we could utilize each person in the array and have them
call the helloWorld()method. Loops are an extremely convenient way
to repetitively execute an operation on each cell of the array, without
having to duplicate the code.

12
13
14
15
16
17
18
19

for (int i = 0; i < persons.length; i++) {
 persons[i] = new Person();
}

Person myPerson = new Person();

Person myPerson2 = null;
Person[] persons2 = { persons[0], null, myPerson,

myPerson2 };

Example 16

Shorthand Notation for Multidimensional-Arrays

You can also utilize this shorthand notation for multidimensional arrays. To
do this, you surround each ‘inner array’ with curly brackets and separate
each set of values with a comma:

10
11
12
13
14
15
16
17
18

int[][] numbers = {
 { 0, 42, 3, },
 { 6, 6, -33, },
};

Person[][] persons = {
 { person1, person2, },
 { person3, person4, },
};

Example 17

Examples 18 and 19 show how this will look in memory:

80

Java for Passionate Developers

Example 18

Example 19

We can also use two for-loops, commonly known as a nested loop, to
index a two dimensional array:

10
11
12
13
14
15
16
17
18
19
20

@Test
public void demonstrateTwoDimensonalArrays() {

 Person[] persons = new Person[4][4];
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; i++) {
 persons[i][j] = new Person();
 person[i][j].helloWorld();
 }
 }
}

Example 20

81

Java for Passionate Developers

Utilizing a For-Each Loop

As I mentioned in the last chapter about the For-Each Loop, for-each loops
are extremely useful when applied to arrays. Utilizing the for-each loop we
can iterate through every object in the array without having to know the
length of the array.

16
17
18

for (Person person : persons) {
 /* do something to each object in the array */
}

Example 21

Now we’ve learned in full about how the for-each loop and the array work,
so I’ve shown you one of the most powerful pairings in Java. You can use
arrays to store objects or primitives and iterate through them with loops-
an extremely efficient and clean way to code.

82

Java for Passionate Developers

Chapter 12
Enums

In this chapter, I will talk about enums. Enums are sets of constant values
that can never be changed.

The Final Tag

To illustrate why they are useful, I’m going to start by introducing the
concept of constant values in Java and talk about their flaws. Let’s say we
wanted to save an array, as is, so that any time it is used in the future, we
know for sure which references are in which places. We could do this
using the variable modifier “final”. A variable declared as final is
locked in and cannot have a new value assigned to it. For example, if we
made persons2 final, and then tried to set it to null, the code will not
compile.

83

☒84

final Person[] persons2 = { new Person(), null, null
};

 persons2 = null; /* Compilation Error */

Example 1

This could be very useful if you have a set of values that you want to stay
constant. One of the things you could do is create a set of state values.
State values, as the name implies, tell us what state our program is in.
Let’s say our three state values for our program are “PENDING”,
“PROCESSING”, and “PROCESSED”. We could place these String values

83

Java for Passionate Developers

into an array and add the “final” tag to preserve them. We’re also going
to make the array static so that it’s shared among all the objects. We’ll
call this array MY_STATE_VALUES. Here’s what this would look like:

private static final String MY_STATE_VALUES[] = {
"PENDING", "PROCESSING", "PROCESSED" };

Example 2

You might notice that my variable name does not follow the default “camel
case” convention, but instead is composed of words in uppercase letters
connected by underscores. This is because our “variable”, isn’t really
variable. It’s static and final. You just want it read, the reference
variable can never be reassigned, nor should the object it references be
modified; so to represent this difference, the naming convention is
different. For static final variables, always use capital letters
connected by underscores.

Note:
Although a “final” array reference cannot be reassigned to a different
array, the array that it references can still be modified. So, from our
previous example, “MY_STATE_VALUES[2] = “DONE”;” would not
cause any errors. For this reason, you should be careful when relying on
array values to stay constant.

Going back to Example 2, because the MY_STATE_VALUES array
reference is private and uses the uppercase naming convention to
communicate our intent, it might be acceptable to assume that the
array’s values will never change. However, you should always be aware
of the potential dangers when making assumptions about mutable
values.

While we can’t modify our array reference variable, we can iterate through
it using a for-each loop. Inside this for-each loop, we could compare our

84

Java for Passionate Developers

states to a certain value and call some method when the value and the
state match.

Comparing Strings

Since String instances are objects and not primitive values, the equals
operator (‘==’) might not work as expected. Instead, String has a
method equals to check for equality. We call it on one String instance
and pass the second in as a parameter. For example,
“someString.equals(otherString)”. The equals method returns
the boolean value true if the two String instances are equal, false
otherwise. If you’re interested in learning more about this, you should
check out the chapter on Identity and Equality in Java, and my blog post
about Hashcode and Equals.

In a for-each loop, I’m going to create three if statements, one for each
state in our MY_STATE_VALUES array.

13
14
15
16
17
18
19
20
21
22
23
24

for (String state : MY_STATE_VALUES) {

 if (state.equals("PENDING")) {
 /* call a method */
 }
 if (state.equals("PROCESSING")) {
 /* call a method */
 }
 if (state.equals("PROCESSED")) {
 /* call a method */
 }
}

Example 3

So this looks like it would work great. We iterate through everything in the
MY_STATE_VALUES array and the three methods are all called in the
proper order. However, as I mentioned before, the MY_STATE_VALUES

85

https://marcus-biel.com/hashcode-and-equals/

Java for Passionate Developers

array is modifiable. If one of the state values was changed to “blah” right
before our if statements, that would be a problem. Don’t worry, though,
there’s a solution: the enum.

Enum

An enum allows us to define an enumeration which means a complete
ordered list of a collection. This enumeration cannot be modified once
created. An example of an enumeration in real life would be a traffic light.
It has three distinct values: green, yellow and red; no matter what happens
you can never change these values. This could be extremely useful if
applied to something like the set of states we talked about in Examples 2
and Example 3. Let’s create an enum named LoggingLevel which
stores those three states:

1
2
3
4
5
6

package com.marcusbiel.javaBook;

public enum LoggingLevel {
 PENDING, PROCESSING, PROCESSED;
}

Example 4

As you can see in Example 4 above, an enum is declared similarly to a
class, but with the “enum” keyword replacing “class”. Inside the
declaration, we list the enum value names, separated by commas. For
simple enums like LoggingLevel, the ending semicolon is optional, but it
is good practice to include it. And that’s it! We’ve defined our enum.

An enum is useful when we want to have a list of items, such as states or
logging levels, that we want to use in our code, but we don’t want them to
be changeable. While the references contained in the array object can be
modified, the enum constant values cannot.

86

https://docs.google.com/document/d/1u_FqYqGQIK-Oq4u2N0ZCAURjFaqiYa_wV53iu-pqvD0/edit?copiedFromTrash#equ_staticFinalVariable

Java for Passionate Developers

Uses of Enums

An enum consists of one or more constant values. You can create
reference variables that point to enum values and print them. You can also
check the equality of enum values using ‘==’ instead of the equals
method. This is because all enum values are unique and constant, and we
know that no enum value is ever copied. Therefore, checking for identity is
the same as checking for equality. If you’re interested in the difference
between these two, check out the chapter about Identity and Equality in
Java.

5

6

7

LoggingLevel currentLoggingLevel =
LoggingLevel.PROCESSING;

System.out.println("current LoggingLevel is: " +
currentLoggingLevel);

System.out.println(currentLoggingLevel ==
LoggingLevel.PROCESSING); /* true */

Example 5

You can also search through your enumeration to find a specific enum
value using a String. For example:

8

9

LoggingLevel currentLoggingLevel =
LoggingLevel.valueOf("PROCESSING");

LoggingLevel illegalLoggingLevel =
LoggingLevel.valueOf("processing");

/* Error is thrown */

Example 6

Please note that the functionality displayed in Example 6 is case
sensitive, meaning that the second line of code would cause an exception
to be thrown when the code is run. For more information, check out the
chapter on Java exceptions.

87

Java for Passionate Developers

Adding State to Enums

Another feature of enums is that we can add fields to enums and construct
each value with a specific state. For example, let’s add a primitive field to
LoggingLevel and assign each level a different number. If we create a
private variable i, and set it to the number we send our constructor, we
can assign a meaningful value to each logging level. Since both the
constructor and the value should only be visible inside the class, I’m going
to make them private.

Since the enum will call the constructor on its own, you’re not allowed to
construct enum values. This is why we make our enum constructor
private.

If you want to show off and appear smart, you should know that you
technically can also make an enum constructor package-private, however,
it's about as useful as the human appendix. Using the package-private
modifier doesn’t help because you still can’t construct an enum from
outside.

3
4
5
6
7
8
9

10
11

public enum LoggingLevel {
 PENDING(1), PROCESSING(2), PROCESSED(3);

 private int i;

 private LoggingLevel(int i) {
 this.i = i;
 }
}

Example 7

88

Java for Passionate Developers

Applying Enums to our Example

Now we can go back to Example 3 and start using our newly-defined
enum instead of the original state array. To get all the values of our enum
we use the values method, which returns all of our enum values in an
array.

11
12
13
14
15
16
17
18
19
20
21

for (LoggingLevel state : LoggingLevel.values()) {
 if (state == LoggingLevel.PENDING) {
 /* call a method */
 }
 if (state == LoggingLevel.PROCESSING) {
 /* call a method */
 }
 if (state == LoggingLevel.PROCESSED) {
 /* call a method */
 }
}

Example 8

We can actually shorten our code even further if we add something called
a switch statement to replace the if statement we used in Example 5, but
we’ll do that in the next chapter which discusses the Java switch statement
in detail.

89

Java for Passionate Developers

Chapter 13
Switch Statements

The switch statement is another type of conditional. It is similar to an
if-statement, but in some cases it can be more concise. You don’t have to
think about the exact meaning just yet, as we will get to it in the example
below:

We’re going to use this series of status enums (shown in Example 1), from
the chapter about enums, for our examples. But instead of using a series
of if-statement branches, we use switch to operate on the enum’s values.

1
2
3
4
5
6

package com.marcusbiel.javaBook;

public enum LoggingLevel {
 PENDING, PROCESSING, PROCESSED;
}

Example 1

The switch statement is shown in Example 2. Syntactically, it is similar to
an if-statement, but instead of writing if, you write switch. Inside of the
switch we write the variable we are trying to compare, in this case, state.
Each case is a potential value of switch we are trying to compare to. That
is to say, case PENDING: is roughly the same as saying: if (status
== Status.PENDING). The inside of each case is similar to inside the
curly brackets of an if-statement. To terminate a case, you can type the
word break, or write a return statement. If you don’t have either of
these, the code ‘falls through’, an idea that I’ll explain in the next section.

90

Java for Passionate Developers

If you only have one value, then an if-statement is more concise, as switch
statements have the added overhead of writing switch (status)
{...}. However, a switch statement is preferable when you iterate
through multiple values with short code blocks, such as a method call,
inside in each condition. The more conditions you have, the shorter your
switch statement is compared to the equivalent branches of if-statements.

15
16
17
18
19
20
21
22
23
24
25
26
27

LoggingLevel state = LoggingLevel.PENDING;

switch (state) {
 case PENDING:
 onPending();
 break;
 case PROCESSING:
 onProcessing();
 break;
 case PROCESSED:
 onProcessed();
 break;
}

Example 2

Another alternative to avoid falling through is to return a value inside the
switch statement to leave the surrounding method, as shown in Example
3. This exits the method, and therefore doesn’t fall through to the rest of
the switch statement. In this case, the return value of our process method
is String. If no case is met, we will return a default String instead.

91

Java for Passionate Developers

11
12
13
14
15
16
17
18
19
20
21

private String process(LoggingLevel state) {
 switch (state) {
 case PENDING:
 return pendingAsString();
 case PROCESSING:
 return processingAsString();
 case PROCESSED:
 return processedAsString();
 }
 return defaultString();
}

Example 3

Falling Through

The code in Example 4 is an example of a switch statement lacking a
break statement for the case PROCESSING. Given a PENDING status, we
would call the pending logic, leaving the switch altogether with the break
statement. This works as intended.

12
13
14
15
16
17
18
19
20
21

switch (state) {
 case PENDING:
 onPending();
 break;
 case PROCESSING:
 onProcessing();
 case PROCESSED:
 onProcessed();
 break;
}

Example 4

However, given a PROCESSING status, we end up calling both the
onProcessing()and the onProcessed() method. In other words, the
PROCESSING case falls through to the PROCESSED case. In this

92

Java for Passionate Developers

example, both cases have their own independent code within, so it
probably wasn’t intended to fall through.

Falling through can be useful though when you want two cases to execute
the same code. Since there’s no way to say “and” in a switch statement, to
avoid duplicate code you could fall through in the first case and then write
the code in the second (See Example 5).

7
8
9

10
11
12
13
14
15
16
17
18

switch (state) {
 case PENDING:
 onPending();
 break;
 case PROCESSING:
 /*
 * falling through
 */
 case PROCESSED:
 onProcessingOrProcessed();
 break;
}

Example 5

Switch statements that fall through are a big source of bugs and are very
dangerous as the lack of break statements can be difficult to spot. If you
do intend to have your switch statement fall through, leave a comment
saying so, as if to tell the next programmer, “this switch-case is falling
through on purpose.” - Otherwise he might be tempted to “fix” it.

The Default Clause

The syntax for switch statements doesn’t require a case for all possible
values. You can leave cases out. When no matching case is found, our
switch statement finishes without doing anything. An alternative to not
doing anything when no cases match is to add a default clause, as I did in
Example 6, which matches when none of the other case clauses apply.

93

Java for Passionate Developers

23
24
25
26
27
28
29
30
31
32
33
34
35

switch (state) {
 case PENDING:
 onPending();
 break;
 case PROCESSING:
 onProcessing();
 break;
 case PROCESSED:
 onProcessed();
 break;
 default:
 onDefault();
}

Example 6

The same rules and pitfalls of falling through apply here. On the surface,
most switch statements with a default clause look innocent enough until
you consider what can happen when the next guy comes along and adds
a new value or two to our existing Status enum. Let’s say he adds the
ERROR value. Not knowing our enum’s use in one or more switch
statements, he would inadvertently cause unintended matches on the
default clause due to the lack of an ERROR case! We usually don’t want
that, so I recommend that you either not use the default clause, or better
yet, have it throw an error. (If you want to know more about this, read the
chapter on checked and unchecked exceptions.)

A Few Caveats

Don’t overuse switch — and by extension — don’t overuse
if-statements. These conditional statements, when overused, are
infamous for overly complex code, often written with nested if, switch, or
even for-loop statements.

94

Java for Passionate Developers

I have seen too many codebases with methods having code margins up to
eight levels or more deep, and almost always the culprits are
poorly-organized, tedious, deep litanies of conditional statements and the
blocks they contain. These are relics of the past eras of procedural
programming—a style of programming that builds upon procedures which
makes you think like a machine. But humans don’t usually think like this.
The cool thing about object-oriented programming is that it’s very close to
how humans think. This allows us to talk to business guys, and when done
properly, makes our code read very nicely.

The switch statement is not object-oriented. In
Object-Oriented-Programming (OOP), there are some corner cases where
it fits the bill as it is quick and easy to use. These are often instances
where you would only have very few cases making up a small switch
statement. However, there are too many instances where people would
write hundreds of lines of code amounting to one long, crazy, hard-to-read
switch statement. There are object-oriented techniques for reducing the
complexity of such statements that help us express the same meaning.
For example, we could represent the PENDING status with an object, the
PROCESSED state with another, and so on. I won’t discuss this in any more
detail because these ideas are beyond the scope of this chapter; in
summary, stick to only using switch statements for a very small number of
cases.

95

Java for Passionate Developers

Chapter 14
Logging

The term logging originates from ancient times when a ship’s captain used
to write down everything that was happening with the ship. (For example,
the speed the ship was going and what course the ship was on.) The book
he wrote this information into was called a logbook. The log part of the
word came from a special tool the sailors measured the ship’s speed with,
which consisted of a reel of string with a log tied onto one end.

As a programmer, you are the “captain” of your code. You want to “write
down” – or “log” – events that occur while your program is running. For
example, you could print what is going on to the console, to a file or by
email. You want to monitor things such as if the system has been hacked,
what methods your code is calling, and how efficiently it’s working. You
could then later go through your logging file and analyze the relevant
information to help you improve and debug your code.

Logback

For many years, the most prominent logging framework was Log4j. This
has changed. At the moment, LOGBack is used because it’s more
powerful. LOGBack was developed as an improvement on Log4j by the
same developer who created both, Ceki Gülcü.

How do we start logging? First of all, we configure the dependencies using
Maven. The configurations requires dependencies org.SLF4J,
logback-classic and logback-classic. This is the implementation of SLF4J

96

http://logging.apache.org/log4j/
http://logback.qos.ch/
http://ceki.blogspot.de/
https://maven.apache.org/

Java for Passionate Developers

and is the core code of LOGBack, therefore, we need these three
dependencies to get logging into our code.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.5</version>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-core</artifactId>
 <version>1.0.13</version>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.0.13</version>
</dependency>

Example 1

Next, under the resources directory (src/main/resources), there
should be a file called logback.xml, in which we can define certain
things, such as how and where logging should be done (see Example 2).
In this case, giving the class ConsoleAppender will allow the code to be
logged directly to the console. There are also other implementations for
logging that allow us to log into a file, into a database or into an email (to
name just a few). We can also provide our own implementation for new
logging sources that don’t exist.

97

Java for Passionate Developers

1
2
3

4
5
6

7
8
9

10
11

12
13
14
15
16

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="true">
 <appender name="STDOUT" class="ch.qos.logback.core.

ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level

%logger{35} - %msg %n
 </pattern>
 </encoder>
 </appender>

 <logger name="com.marcusbiel.javaBook"

level="debug"/>

 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Example 2

In this case, we are using the ConsoleAppender, so we know the log is
being written to the console. But how and when is a message written to
the console? You should read the documentation for details, but, briefly,
the printed pattern shown in Example 2 gives the time when the event
occurred, the thread, and the logging level. The logging level is a sort of
“grouping mechanism”. We have different levels of logging, which, to some
extent, indicate a problem’s severity. Logging level DEBUG, as the name
implies, is used for debugging purposes. Debugging is the process of
finding and resolving bugs in your code. DEBUG should be used
infrequently, since for debugging we could use the debugger included in
an IDE or we could write tests. There are also INFO and ERROR logging
levels. Logging level ERROR is used if there is an error in the code, and
INFO is used for general information like for a server or application
starting or stopping.

98

Java for Passionate Developers

In the logback.xml file (under src/main/resources), we specify that
we want to log on level DEBUG, and we provide a package name, which
will specify that we are enabling logging for classes under this particular
package. We have mentioned the com.marcusbiel.javaBook
package, but we can extend that and log only for specific classes, for
example com.marcusbiel.javaBook.CarService. For the level, we
could put ERROR instead of DEBUG which would mean “Log it only if it’s
an error.” We could also type INFO, which would mean “Only log it if it’s
information.” INFO includes the info level errors, and DEBUG includes all
three levels - debug, info and error. Different levels make the logging
mechanism more flexible. Different loggers for different packages could be
used as well. For example, we could have a different package like
com.marcusbiel.javaBook2, and provide a different logging
configuration for it. We could then have one package on DEBUG and the
other one on ERROR. We must also set a tag for the root level, which is
generally set to INFO level.

First of all, let’s go to our CarService class and add the logging details,
as shown in Figure 3. We need to import org.slf4j.Logger. SLF4J
knows to access LOGBack and it will find the dependency of LOGBack
classic in the Maven configuration file. We also import
org.slf4j.LoggerFactory (A factory is another type of design
pattern, by the way. In short, factories allow you to centralize the place of
object creation, allowing for cleaner code and preventing code
duplication).

99

https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package com.marcusbiel.javaBook;

import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class CarService {

 private final Logger log =

LoggerFactory.getLogger(CarService.class);

 public void process(String input) {
 if (log.isDebugEnabled()) {
 log.debug("processing car:" + input);
 }
 }
}

Example 3

In the CarService class we create a private final Logger and call
it log. We then say LoggerFactory.getLogger(..). This is generally
how you define a logger. For now, we don’t need to worry about how the
object is created, as the factory is smart and does all the necessary work
on its own. Inside the constructor we pass the Logger constructor the
name of the same class in which it was defined, i.e. CarService.class.
We used the if-condition check to make sure that our logger was in debug
mode before we logged, which is good practice, because otherwise your
debugging could result in a decrease in performance. We would be
creating strings without actually logging them, which would be using
unnecessary hardware resources.

Example 4 shows the test that will use the logging service. Now the
logging can be used in the process() function of the class CarService.

100

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.marcusbiel.javaBook;

import org.junit.Test;

public class CarServiceTest {

 @Test
 public void shouldDemonstrateLogging() {
 CarService carService = new CarService();
 carService.process("BMW");
 }
}

Example 4

The input to the process() method is given as “BMW”. This will create a
String that will be concatenated with “processing car:”, and will be
logged.

In this scenario, it’s not so bad to use logging without the check, as all that
would happen is that the two strings’ arguments would be concatenated.
But consider that the input string is of infinite length. This concatenation of
two strings, as silly as this may sound, can take a lot of time. Here we just
have a very simple, small program with just one debug line. Imagine a
thousand users concurrently calling this method, and it taking 200
milliseconds per method call. 200 milliseconds might not seem like a lot of
time, but if the method is called thousands of times, this could use a lot of
processing power on a server or a PC, leading to a drop in performance.
We only want to concatenate the strings and prepare them for logging if
logging is enabled. If we call a logging method and logging is not enabled,
without checking first, the strings will be concatenated, but not written to
the log. As a result, the concatenation would have been done
unnecessarily. This is something we would like to prevent, and is the
reason why we use isDebugEnabled, isInfoEnabled, or
isErrorEnabled, and so on.

101

Java for Passionate Developers

Even though this String concatenation logging is already fairly simple
with Log4j and SLF4J, there is a smarter, simpler way, as shown below in
Figure 5. We can put in curly braces in place of the variables, replace the
“+” sign with a comma and then write the input String. The framework will
check if the user wants to log on debug level. If so, it will take this input,
convert it to a string, if it’s not a string already, and concatenate both
strings. Like in Example 3, the strings won’t be concatenated unless the
system is in debug mode, which helps to keep your program as efficient as
possible. Here, however, we don’t have to use a conditional to check this
since the debug function internally concatenates the String. This is
stylistically better because it takes up fewer lines, while still providing the
same functionality and protection from inefficiencies.

14
15
16

public void process(String input) {
 log.debug("processing car: {}", input);
}

Example 5

Here we have the input, given from the process method, and we want to
print ”processing car:” concatenated with the input String. In our
test we put BMW as the input String. In our configuration file,
logback.xml, we set the com.marcusbiel.javaBook package’s log
level as DEBUG, and the root level as INFO. Let’s run the test. On level
DEBUG, the timestamp, the package, the class CarService and the
String “processing car: BMW” were logged on the console.

Now, let’s try deactivating the debugging logger. Let’s say we only want to
log on ERROR level for the package com.marcusbiel.javaBook. We
make this adjustment in logback.xml. Let’s execute it again. There will
be no BMW logged. Now let’s change the root level to be DEBUG, and
change the package, for example com.marcusbiel.javaBook2. We’re
not in com.marcusbiel.javaBook2, we are in the package
com.marcusbiel.javaBook, which means that we should log on the
root level which is DEBUG. We would expect the test to log again. Let’s try
it. It logs: “DEBUG com.marcusbiel.javaBook.CarService –

102

Java for Passionate Developers

processing car: BMW”. Even though we aren’t in the package
com.marcusbiel.javaBook2, the root level is defined as DEBUG, which
is why the DEBUG message is shown.

In the logback.xml file, there is a ConsoleAppender attribute in the
appender tag (see Example 1). ConsoleAppender is a type of appender
that logs to the console which we can also see in our IDE. If we can run
this from a terminal, we will see it directly within the terminal.

Logger Documentation

If you look in the Logger documentation, in the section “typical usage
pattern”, the example code they show (see Example 6 below) will be very
similar to what we did in our example. You can log with
logger.isDebugEnabled(), as shown before, or use the better
alternative of the curly braces. They are very similar, but the first way uses
three lines of code that clutter your code, and the other way uses only one
line, which makes your code cleaner and simpler. Logging is important, but
it should not get in the way of what you are trying to achieve with your
code. Be sure to read through the documentation for a better
understanding.

103

http://logback.qos.ch/manual/index.html

Java for Passionate Developers

3
4
5
6
7

8
9

10
11
12
13
14

15
16

17
18
19
20

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Wombat {
 final Logger logger =

LoggerFactory.getLogger(Wombat.class);
 Integer t;
 Integer oldT;

 public void setTemperature(Integer temperature) {
 oldT = t;
 t = temperature;
 logger.debug("Temperature set to {}. Old

temperature was {}.", t, oldT);
 if (temperature.intValue() > 50) {
 logger.info("Temperature has risen above 50

degrees.");
 }
 }
}

Example 6

Logging on Different Levels

Now we will look at logging on different levels, for example ERROR. We’re
still on DEBUG level, and ERROR is included within DEBUG because
DEBUG is the most specific logging level. In the traces, we would expect to
see ERROR, not DEBUG, as a prefix for the printed log line, in order to
differentiate how important some logging events are. We might log, for
example, “Some error occurred”, in the case of an error. In our example,
“processing car:” is not an error, therefore, we should not log that on
ERROR level. We can also log on WARN level, in case of a warning. We
would use warning for something very close to an error, but where it is not
critical to the operation of the system and no one has to physically
intervene in any way. INFO, for example, could be used when a server or

104

Java for Passionate Developers

a program starts up, so that the system admin’s team knows that
everything is going well.

Now, let’s set the root level to ERROR. The package that we’re not using
com.marcusbiel.javaBook2, as well as the root level are now on the
ERROR level. They are printed to STDOUT, which is the name I gave to
the appender. When running that, we expect not to see any logging. We
will see the info from LOGBack, but the logging itself has gone. If we
change the package back to com.marcusbiel.javaBook we should
see the log message again.

Appenders

Before I end off, I would also like to quickly go over Appenders. If you’re
interested in reading more, you can check out the appender
documentation.
There are different types of Appenders. A few examples are:
ConsoleAppender, FileAppender, RollingFileAppender,
DBAppender and SMTPAppender. We have already used
ConsoleAppender to write to the console. FileAppender is used to
write into a file. RollingFileAppender means that new files are
created when the file has a certain size or, for example, a new log file is
created at the beginning of each day. This is important for servers,
because if we’re always writing into the same file, the file size could reach
tons of gigabytes. Therefore, RollingFileAppender is used on servers
very often. DBAppender allows us to directly log into a database, and is
very easily configured. SMTPAppender is used for logging and sending
an email.

There are a lot of Appenders that you can use out of the box. As
previously mentioned, you can always extend it and write your own
Appender, which would allow you to log to any other source.

105

http://logback.qos.ch/manual/appenders.html
http://logback.qos.ch/manual/appenders.html

Java for Passionate Developers

Chapter 15
The Java Main Method

In this chapter, I will be discussing the public static void

main(String[] args) method. Up until this point we have run our
code only through the JUnit framework. This is a sound, methodological
practice, however, this is different from how our program would be run in
production. Now let's explore how our code would run outside of the
development environment.

The Main Method

Initially, the code you write in a computer program is just static text lying
around passively in a file. To execute the code, the Java Runtime
Environment (JRE) is responsible for loading the compiled program and
starting its run. To execute the code the JRE needs an entry point. When
running a Java class from the command line, the entry point the JRE looks
for is the following method:

24
25
26
27
28

public static void main(String[] args) {
 /*
 * JRE starts by executing any code in here
 */
}

Example 1

Let’s look at each part of the method in detail:

● public - allows the method to be called from outside the class.

106

Java for Passionate Developers

● static - allows the method to be called without having an instance
of the class created.

● void - it returns no value.
● main() - To execute your program, Java will specifically look for a

method of the name “main”.
● String[] args - You can call your program with a number of

arguments. Your program can access those arguments from this
array.

The String array is called args by default. However, you should avoid
abbreviations in variable names, as they will make your code difficult to
read - therefore, I recommend that you use arguments as the name of
the array, as you can see in Example 2:

24
25
26
27
28

public static void main(String[] arguments) {
 /*
 * JRE starts by executing any code in here
 */
}

Example 2

Both the codes in Example 1 and Example 2 are recognized by the JRE.
Also, one thing about the main method that you might find interesting is
that you don’t even need to use an array - you can replace the array by a
parameter of variable length - “vargs” in short:

24
25
26
27
28

public static void main(String... arguments) {
 /*
 * JRE starts by executing any code in here
 */
}

Example 3

The “vargs parameter” shown in Example 3 is like a more flexible version
of an array - if you directly call this method, for example from a test, it has

107

Java for Passionate Developers

the advantage of accepting a variable number of String arguments, for
example main(“BMW”, “Porsche”, “Mercedes”), without having to
create an array upfront. To be honest, I never really use a vargs
parameter for the main method, but it I think it is a nice detail to know and
show off ;-).

The static main method that we use as an access point is very specific. If
you modify it beyond the ways I’ve discussed, it won’t work as you intend it
to. If you want to drive your colleagues nuts ;-), you are free to deviate
from that pattern, for example by making the method int instead of void,
as shown in Example 4:

24
25
26

public int main(String[] arguments) {
 return 42;
}

Example 4

This will create a method of the name main, but it won’t be recognized as
“THE” main method, and therefore the program won’t be able to run using
this method as a starting point.

Coding Examples

In Example 5, we will create a class called CarSelector and add a main
method to it. It prints out each of the command line arguments back to the
console:

108

Java for Passionate Developers

1
2
3
4
5
6
7
8

9
10
11
12

package com.cleancodeacademy.javaBook;

public class CarSelector {

 public static void main(String[] arguments) {

 for (String argument : arguments) {
 System.out.println("processing car: " +

argument);
 }
 }
}

Example 5

With the help of the main method we can execute this code without using
its test to call it, as we have done up until this point in this book.

Compiling using the Command Line

To run our program from the command line, we must first navigate to the
root folder of our source code, as I show in Example 6. In our case, this is
src/main/java. As a side note, this is the default folder structure for
"Maven", a build management tool I highlighted earlier when I talked
about Java Development Tools. This is how I would do this on a unix
terminal:

marcus-macbook-pro:~ marcus$ cd src
marcus-macbook-pro:src marcus$ cd main
marcus-macbook-pro:main marcus$ cd java

Example 6

As the full name of our class is
com.cleancodeacademy.javaBook.car.CarSelector, the
Java source file is stored in a subfolder

109

Java for Passionate Developers

“com/cleancodeacademy/javaBook/car/”. To compile the
code we type:

marcus-macbook-pro:java marcus$
javac com/cleancodeacademy/javaBook/car/CarSelector.java

Example 7

This will create a file called CarSelector.class in the same folder as
CarSelector.java, and we can finally execute our program:

marcus-macbook-pro:java marcus$
java com/cleancodeacademy/javaBook/car/CarSelector

Example 8

Alternatively, we could also refer to the class by using it’s fully classified
Java name:

marcus-macbook-pro:java marcus$
java com.cleancodeacademy.javaBook.car.CarSelector

Example 9

As you can see, calling our class without any arguments actually does
nothing. So let’s add some arguments:

marcus-macbook-pro:java marcus$
java com.cleancodeacademy.javaBook.car.CarSelector BMW

Porsche Mercedes
processing car: BMW
processing car: Porsche
processing car: Mercedes

Example 10

Hooray! We have successfully executed our own program from the
console!

110

Java for Passionate Developers

Running your Program using IntelliJ IDEA

To run our program from IntelliJ IDEA, we simply right click the method,
and choose “Run ‘CarSelector.main’” from the context menu, as shown in
Example 11.

Example 11

If we change the signature of the main() method, the “Run
‘CarSelector.main’” command will disappear from the context menu, as
we no longer will have a valid entry point. However, when we run it,
nothing is printed. This is because no one is passing the main()method
any arguments. To do that in the IDE: from the “Run” menu, choose “edit
configurations…”, and in the “configuration” tab add space separated
strings to “Program Parameters”.

Example 12

111

Java for Passionate Developers

Now when we run the main() method, we see our cars printed
out:

processing car: BMW
processing car: Porsche
processing car: Mercedes

Example 13

Commentary

If you’ve read another Java book before this one, or even if this is your first
one, you might be wondering why I have deferred the introduction of the
main() method until this relatively advanced stage in the book. I did this
for a few reasons. Firstly, I believe that it’s important to give you the tools
to completely understand something before I introduce it. If you didn’t
know what public static void meant, or you didn’t know what an
array was, it wouldn’t have been fair to teach it to you. Now that you have
some knowledge about all these things, you can begin to fully understand
how this method works.

Another reason I chose to delay this discussion for so long is because in
object oriented development, static variables and methods should be used
sparsely. There are some instances where you would use static modifier,
but I don’t want to promote its use in this course.

Finally, you will rarely have to write a main method yourself. For every
program (of any size) there is only one main method, and by the time
you’ve joined a project, it probably was already written by someone else.

112

Java for Passionate Developers

Part 3
Intermediate

Concepts

113

Java for Passionate Developers

Chapter 16
Exceptions

Handling exceptions is the process by which you handle an “exceptional
condition”. These situations happen rarely, and in very specific instances.
You could think of these as a specific type of bug, that you expect not to
happen in normal programming, but you still want to protect against.

History of Exception Handling

The mechanism of exceptions does not exist in all languages. It was introduced
in the Lisp programming language in 1972, which is about 30 years after the first
programming language was invented. Initially there were only unchecked
exceptions, but in 1995 the Java programming language introduced the concept
of “Checked Exceptions”, which forces you to handle an exception before being
allowed to run the program.

Java has also been the first and last programming language to add checked
exceptions, which may imply that there are some disadvantages to this
mechanism that I will discuss later in this chapter.

Unchecked Exceptions

Unchecked exceptions are exceptions subclassed from the class
RuntimeException and are not enforced at compile time, but rather are
simply thrown at runtime. An example of such an exception is the
NullPointerException which is thrown when you access a member of
a null reference. This type of exception will stop your code at runtime, so

114

Java for Passionate Developers

typically programmers use validation in their methods to prevent these
exceptions from being thrown.

Exceptional cases are generally programming errors or (other) system
failures. For example, if your code contains an enum that has states like
GREEN YELLOW RED and a switch iterating over it, the current version of
the code probably deals with the enum thinking it has only those three
states. If at a later time the code was changed, and now the enum had
more states, this would be a situation that you could not expect. You never
know what will happen to your code in the future. If you had thrown a
RuntimeException in the case of an unknown enum value, you’d be
following a “fail early” approach. Throwing the exception allows you to
quickly find and eliminate what is causing the exception. This is much
better than ‘hiding’ the error until it becomes a bigger problem for the
system.

Checked Exceptions

As briefly mentioned before, the Java designers devised checked
exceptions as a mechanism to enforce the handling of exceptions.
Checked exceptions are exceptions subclassed from class Exception
which are checked at compile time. If you do not handle these exceptions
in your code, it will not run. The only time you do not have to handle a
method that throws an exception is if the method that you are writing
declares that it too throws the exception, essentially passing the handling
of the exception up the hierarchy.

In my opinion, the use of checked exceptions is contradictory to the idea of
exceptions. As the name implies, an exception is supposed to be
exceptional. In other words, unexpected. Since you are expected to
handle a Checked Exception, this implies that you know it can happen, so
a Checked Exception cannot, by definition, be exceptional. If you know
that under certain conditions something can happen, then you can plan for
it and directly handle it. There will be no need for exception handling in this

115

Java for Passionate Developers

case. For example, it is common for users to send invalid input. You can
validate the user’s input and show an error to the user if the input was
invalid.

Validating Input
So how do we validate our arguments before actually using them? I'll show
you below how to write a method that does this. I’m going to call this
method isValid(). It accepts one argument, and returns a boolean
that tells us whether or not the argument is valid.

6
7
8

9
10
11
12
13
14
15

16
17
18
19

public class CarSelector {

 public static void main(String[] arguments) throws

Exception {

 CarService carService = new CarService();
 for (String argument : arguments) {
 if (isValid(argument)) {
 carService.process(argument);
 } else {
 System.out.println("invalid argument:"

+ argument);
 }
 }
 }
}

Example 1

Now let’s write the isValid() method. Since our main() method is
static, this method needs to be static. We want the method to return
true if the argument is valid and false if it isn’t:

116

Java for Passionate Developers

19
20
21
22
23
24
25
26

private static boolean isValid(String argument) {
 try {
 CarState.valueOf(argument);
 } catch (IllegalStateException e) {
 return false;
 }
 return true;
}

Example 2

In the isValid method, we are going to have a try/catch block. First, we
are going to try using the valueOf() method of the enum class. This
method is part of the Java enum. It directly converts a String to the
corresponding enum value. This method will throw an
IllegalStateException in the case of an illegal value and if it does,
we can catch that and return false. Otherwise our argument was valid.
If you’re interested in learning more about enums you can read the chapter
about them.

The power of Exceptions

Exception handling is actually a very powerful mechanism. When an
exception is thrown, the normal program flow is interrupted. But this power
comes at a price: performance cost. However, this is not an issue for
exceptional cases because they are only expected to happen occasionally
and in the case of an exception, performance is not your biggest problem.

When you are creating exceptions never use Checked Exceptions. For
unexpected exceptions, use a Runtime Exception and log the error. If you
have something that is expected to be problematic, such as user input,
instead of throwing an exception for invalid input, you should validate and
directly handle invalid input.

117

Java for Passionate Developers

Throwing an Exception

Let’s dive into a code example. In Example 3, we have an enum
CarState with different state values, and a method public static
from() that converts a String with a state name to an enum value
(Since Java 7 it's been possible to use a String inside a
switch-statement, but this is not generally recommended. However, in this
case we'll use it, since the user input is in the form of a String).

We will add exception handling, in case the state name is not valid. We’ll
do that by throwing an exception from the default case of the
switch-statement. To throw an exception, you write the word throw,
followed by creating a new Exception()object.

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

public enum CarState {
 DRIVING, WAITING, PARKING;

 public static CarState from(String state) {
 switch (state) {
 case "DRIVING":
 return DRIVING;
 case "WAITING":
 return WAITING;
 case "PARKING":
 return PARKING;
 default:
 throw new Exception();
 }
 }
}

Example 3

In this case, the exception we are throwing occurs whenever there is an
invalid state being sent to the from()method.

118

Java for Passionate Developers

The exception that we threw in Example 1 is a Checked Exception, so we
have to handle it whenever we call the from() method. Typically, you
don’t want to handle an exception in the method where it is created, as this
isn’t the point of an exception. Our goal is to have this exception handled
when another class uses this method, so that it is protected in case the
exception is thrown. To pass along this exception we add throws
Exception to the method declaration:

4
5
6
7

20
21

public enum CarState {
 DRIVING, WAITING, PARKING;

 public static CarState from(String state) throws

Exception {
 [...]
 }
}

Example 4

Now, let’s write a class that calls the from()method. We’ll call this class
CarService. Again, I’m just gonna pass this exception up the chain, so
to speak.

3
4

5
6

7
8
9

10

public class CarService {
 private final Logger log =

LoggerFactory.getLogger(CarService.class);

 public void process(String input) throws

Exception {
 log.debug("processing car:" + input);
 CarState carState = CarState.from(input);
 }
}

Example 5

Ok, now we get the next method in our code, but again, I’m just gonna
write throws Exception.

119

Java for Passionate Developers

3
4
5

6
7
8
9

10
11
12

public class CarSelector {

 public static void main(String[] arguments) throws

Exception {

 CarService carService = new CarService();
 for (String argument : arguments) {
 carService.process(argument);
 }
 }
}

Example 6

As you see, we ended up adding the exception in every calling method, all
the way up to our main() method. The exception is not handled, and if it
occurs, the program will stop with an error. This is a typical situation, in
which you end up adding the throws statement to each and every
function in your code. This is why a checked exception is frankly not very
helpful; we never even bother to handle it and we end up getting the same
stack trace printed as our output.

Instead of doing this, we could write an unchecked exception. If we write
an unchecked exception, we can remove every single throws
Exception that we have just written, and replace our Exception()
throw with throw new RuntimeException(); With this exception,
we can also provide some information on why our exception was thrown.
In this case, I’m going to tell the user that they sent us an unknown state,
and then tell them which state it was that caused this exception to be
thrown.

120

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18

public enum CarState {
 DRIVING, WAITING, PARKING;

 public static CarState from(String state) {
 switch (state) {
 case "DRIVING":
 return DRIVING;
 case "WAITING":
 return WAITING;
 case "PARKING":
 return PARKING;
 default:
 throw new RuntimeException("unknown

state: " + state);
 }
 }
}

Example 7

Handling an Exception

Let’s say we don’t want our code to stop running when the user sends us
an unknown state. We could handle the exception by surrounding our
from() method call with a try/catch block. Usually, you want to have
this try/catch block as early on as possible in the code, so wherever the
problem will potentially be caused, you should surround that call in the
try/catch. In this case, that is in our main() method.

First, we wrap our method in a try block. After the try block ends, we add a
catch block that accepts the Exception as its argument. All exceptions
have a method called printStackTrace() that prints a list of all the
methods called in reverse order. This is great for debugging because we
can see exactly where in each class the exception happened.

121

Java for Passionate Developers

In Example 8’s try block, if an exception occurs, none of the lines after the
line that caused the exception will be executed. If there isn’t an exception,
then you can safely assume that the call succeeded in the following lines.
Because of this, we can write our try block of the code as if everything
works, while handling the exceptions separately.

3
4
5
6
7
8
9

10
11
12
13
14
15
16

public class CarSelector {

 public static void main(String[] arguments) {

 CarService carService = new CarService();
 for (String argument : arguments) {
 try {
 carService.process(argument);
 } catch (RuntimeException e) {
 e.printStackTrace();
 }
 }
 }
}

Example 8

The finally-Block

Exceptions, as I’ve noted, interrupt the normal program flow, but often we
have code that we want to run whether or not our try block works. For
example, when handling resources such as IO or database connections,
we want to properly free them in the case of an exception.

In fact, it is a classic bug for programs to leak resources or improperly
close them when exceptions occur, because the code that handles freeing
them is interrupted, or isn’t executed.

For this reason Java defines the finally keyword, to add an optional
finally block to the try/catch construct.

122

Java for Passionate Developers

4
5
6
7
8
9

10

try {
 carService.process(argument);
} catch (RuntimeException e) {
 LOG.error(e.getMessage(), e);
} finally {
 System.out.println("I print no matter what");
}

Example 9

With a valid argument, the code in the try block will be executed. With an
invalid argument the normal program flow will be interrupted, and the code
in the try block will not be executed, but we will instead log our error. No
matter what, the line “I print no matter what” will still print.

Ways to Handle Exceptions

Many Java books and tutorials never teach how to properly handle an
exception and append a comment along the lines of “do proper exception
handling here”, without explaining what to “properly” write. This might be
why many programmers often print a stack trace instead of choosing a
more beneficial way to handle their errors.

e.printStackTrace prints the exception's stack trace to the standard
error output, which usually is the raw console. In simple terms, the stack
trace shows the order of nested method calls that lead to the exception,
which can be helpful to find the cause of the exception. In other words, this
is a basic attempt to generically signal that an error occured, along with
the potential source of the error.

This can be useful in very specific situations, like for small developer tools
run from the console. Usually however, this approach is not optimal. If
possible, you should always handle an exception. For example, if reading
a value from a database fails, it might be possible to return a cached value
instead. If you can't handle the exception, the minimum you can do is to

123

Java for Passionate Developers

log the exception as well as keep hold of the complete state the system
was in when the exception happened - as close as possible.

Generally, you want to have information such as the time when the error
occurred, the name of the system, the full name of class and the method,
and the exact line number where the error occurred in the code.
Additionally, you should log the status of relevant objects, such as the
parameters used by the faulty method. With the help of a logging
framework like Logback, this can be achieved without much effort. It can
be configured to log to a file or a database, which will permanently persist
the error. To learn more about logging, read the chapter on Logging with
SLF4J and LOGBack.

Using a logging framework for error notification is generally preferable to
directly printing out the error to the console, as it is a more flexible and
powerful way of getting hold of the cause of an exception and to persist it
to a storage medium such as a file or a database.

124

Java for Passionate Developers

Chapter 17
Interfaces

Definition of the Interface

“Interface” is a generic term that is used widely across fields. Wiktionary
defines it as “the point of interconnection between entities”. This term has
been adapted to programming and plays a key role in Object Oriented
Programming (OOP). In OOP, an interface is defined as “a piece of code,
defining a set of operations that other code must implement”.

History of Interfaces

Even though many believe that Java was where the idea of an interface
was initially introduced to programming, it actually was introduced by Brad
Cox and Tom Love, the creators of Objective-C, with the concept of the
protocol.

While the concept did not originate in Java, it was adopted into the
language from the very beginning. You could say that Java was the
successor to C++ and in C++ they used a model involving multiple
inheritance. Multiple inheritance is more complicated and problematic than
the single inheritance model that is used in Java. It also is more difficult to
implement multiple inheritance in a compiler. Funnily enough, it seems as
though interfaces weren't introduced into Java to create “cleaner, more
modular, and clearly separated code”, but rather just to compensate for
the fact that Java doesn't support multiple inheritance. Nowadays
however, that’s exactly what interfaces are useful for.

125

https://en.wiktionary.org/wiki/interface

Java for Passionate Developers

Writing an Interface

To demonstrate interfaces, we’re going to create a CarService class.
We know that we want our CarService class to have a method called
drive. When drive is invoked in the CarService class, we’re going to
cause all the cars in our service to drive.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

package com.marcusbiel.javaBook;

public class CarService {

 public void drive() {
 BMW bmw = new BMW();
 Porsche porsche = new Porsche();
 Mercedes mercedes = new Mercedes();
 bmw.drive();
 porsche.drive();
 mercedes.drive();
 }+
}

Example 1

As you can see in Example 1, our CarService creates three more
objects. At this moment, the CarService class is deeply coupled to these
other classes of cars. Each car is its own class, with no real connection
besides the fact that they each have a drive method. This is something
we don’t want and I’ll explain why later in more detail.

Here is where we can improve our code using an interface. In our code we
have three different cars. All of these cars can drive, and you can already
see that we have three different drive methods. We could just create a
Car class and a carType value in that class, but the drive method in
this hypothetical class will force all our different types to drive the same

126

Java for Passionate Developers

way. This is an issue, because different cars drive in different ways. For
example, the specific car types, (BMW, Mercedes, and Porsche), all have
their own unique engines. On the other hand, we’ve already recognized
that all these cars drive and that they also have other similarities like four
wheels and two axles. These common features can be grouped together
and accessed using an interface, without any knowledge of the particular
car type. Example 2 below illustrates this nicely.

1
2
3
4
5
6

package com.marcusbiel.javaBook;

public interface Car {
 void drive();
}

Example 2

Now we have defined an interface called Car which contains the
declaration for the drive method. Please note that by default all methods
in an interface are public abstract, so we don’t need to include those
modifiers in our methods. Doing so would just clutter the code. An abstract
method requires any class that implements this interface to provide
concrete implementation of the abstract method. Similarly, all class level
variables declared in an interface have the default modifiers “public
static final”. Typically, while you can, you don’t want to include
constants in an interface. If you create a constant called MAX_SPEED at an
interface level, you are adding concrete values to an interface. The goal of
interfaces is to be “lightweight”, without any implementation. Like a
contract or a blueprint, interfaces define “what”, but not “how”. These
implementation details should be put within a class, or even better, in an
enum.

Subclass Implementing Interface

Let’s modify our BMW class so that it “implements” the Car interface. This
defines the BMW as a type of Car and it will adhere to the contract, or role,

127

Java for Passionate Developers

specified by Car. For a concrete class to successfully implement an
interface, it needs to override all the abstract methods of that interface. In
this case, BMW must override the drive method. We’re also going to
implement the Loggable, Asset, and Property interfaces. To
implement multiple interfaces, separate each interface name with a
comma.

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

package com.marcusbiel.javaBook;

public class BMW implements Car, Loggable, Asset,

Property {

 @Override
 public void drive() {
 System.out.println("BMW driving...");
 }

 @Override
 public int value() {
 return 80000;
 }

 @Override
 public String owner() {
 return "Marcus";
 }

 @Override
 public String message() {
 return "I am the car of Marcus";
 }
}

Example 3

128

Java for Passionate Developers

Overriding a method is quite straightforward. In an implementing class,
declare a method with the same signature and return type as the method
you want to override The signature of a method consists of its name and
return type. No two methods in the same class can have the same
signature.

Finally, as you can also see in Example 3 above, it is good practice to add
the @Override annotation wherever you override a method. This clearly
signals that the method is meant to override another method.

Besides overriding interface methods, you can also override a method of a
super class. We will talk about this more in detail in the chapter on
Inheritance in Java.

For each of the interfaces I implemented, I had to override a method as I
did above. Now we can revisit our CarService class. Assuming we
implemented Car for the BMW, the Mercedes, and the Porsche, we can
clean up our code. The first thing we can do is instantiate all of our car
types as Car:

6
7
8

Car bmw = new BMW();
Car porsche = new Porsche();
Car mercedes = new Mercedes();

Example 4

The objects keep their specific types, however, we are referencing them
with an interface to the object. By doing this our reference variable will only
allow us to use methods provided by the given interface, and now the
object plays a certain “role” in the given context.

As shown in Example 3, BMW also implements the other interfaces
Loggable, Asset and Property that would only allow us to use
different sets of methods. These “lenses” that our reference variable could
act as allows a BMW object to fulfill different roles in different contexts.

129

Java for Passionate Developers

Now we can use Car for all three of the cars and it would make our code
much more flexible.
Even if later on we add new types of cars that implement the Car
interface, we can still deal with them even if we didn't know of their
existence when we wrote CarService. Also, because all of our cars are
actually implementing the Car interface, we can clean our code up even
more using a foreach loop. We can now also retrieve all of our cars from a
database, because no matter the type of car, they all can be stored in one
array.

1
2
3
4
5

10
11
12
13
14
15
16

package com.marcusbiel.javaBook;

public class CarService {
 public void drive() {

 [...] /* dynamically retrieving cars from a
database */

 for (Car car : cars) {
 car.drive();
 }
 }
}

Example 5

Now our CarService doesn’t have any specific implementations
anymore. This is called “decoupling”. The CarService class only uses
and knows about the Car interface, not any specific types of cars.

Pros and Cons of Interface

To conclude, I’m going to discuss the pros and cons of interfaces in Java.

130

Java for Passionate Developers

Interfaces play an important role in decoupling Java code. Declaring a
reference variable of an interface type allows you to substitute for different
car types at runtime. For example, our CarService class can deal with
either a BMW or a Mercedes based on different scenarios.

This advantage is especially important in large projects with many
developers. For a team to work efficiently, good communication is
essential. However, with every additional team member, the
communication effort increases exponentially. This means that teams
larger than a certain size can no longer work efficiently. To counteract this,
large components may be divided into subcomponents. Interfaces enable
communication between the components. They constitute a binding
contract for both sides and offer guidelines that both sides can follow
without having to know the exact implementation details of the other side.

On the other hand, the drawback of using an interface is that it adds
additional complexity to a system. Each interface provides code that needs
to be written, read, understood and maintained in the long term. Also, an
interface acts as layer of "indirection" between the code that performs a
function and the code that relies upon that function. This can make it more
difficult to navigate the system and, for those unfamiliar with it, to
understand the system. Even if a single interface on its own does not add
much additional complexity, the effort can quickly add up in a system with
many interfaces. As a Clean Coder, it is essential to fight any kind of
artificial complexity rigorously if you want to maintain a truly clean system.

You should never introduce an interface simply for the sake of it. Please
think very carefully about where an interface could be useful and where
not. Base your decision only on concrete requirements, and not on
possible changes that might arise later on. Software is soft. We can
introduce an interface, should this prove useful, also at a later time.

That concludes my chapter on interfaces in Java. Remember, interfaces
are one of the most powerful tools Java has to offer, but they should be
used wisely.

131

Java for Passionate Developers

Chapter 18
Inheritance and Polymorphism

In this chapter, I will be discussing inheritance in Java. Similar to
interfaces, inheritance allows a programmer to handle a group of similar
objects in a uniform way which minimizes code duplication. However, if
inheritance is not utilized properly and at the right time, it can make the
code unmaintainable or even cause bugs in the long run.

A Word of Warning

Inheritance is one of the most powerful features of object-oriented
languages. It sounds very promising and useful when first described.
However, I think it is just a bit too powerful. If used incorrectly, it can
damage your code base—leaving it very vulnerable to bad design, so take
care to use it judiciously. There definitely are cases where the use of
inheritance is justified, but only a few. It requires some experience on the
part of the programmer to wield inheritance properly.

What is Polymorphism?

Polymorphism is a concept deeply related to interfaces and inheritance.
The term “polymorphism” originates from the Greek roots poly morphs –
many forms. Polymorphism allows us create different objects on the right
side of a variable declaration, but assign them all to a uniform object type
on the left side. Let’s take a look at the coding example below:

132

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10

11
12
13
14

package com.cleancodeacademy.javaBook;

import org.junit.Test;

public class ZooTest {

 @Test
 public void shouldFeedAllAnimals() {
 Zoo zoo = new Zoo();
 Animal[] animals = { new Dog(), new Gorilla(),

new Tiger(), };
 zoo.feed(animals);
 }
}

Example 1

We are not actually testing something here; this is only a demonstration.
This example is actually taken from the book Head First Java by Kathy
Sierra. She’s my favorite author for any Java-related book. I highly
recommend that you read Head First Java and any of her other books as
they’re extremely creative and fun to read on top of being very informative.

Let’s focus on our array of Animal objects. Our array has a Dog, a
Gorilla and a Tiger. The usage here is indicative of polymorphism.
We’re using a reference variable of our supertype, or parent class,
Animal, on the left side of our statement and on the right side the
instances are any subclass or subtype of Animal: Dog, Gorilla, and
Tiger in our example. These different animals can be assigned to indices
of animals because polymorphism means that we can have different
implementations on the right side that are handled uniformly on the left.

If you look in our Zoo class, you can see the feed method below that
applies the same code to any Animal, no matter whether it’s a Dog or a
Tiger.

133

https://amzn.to/2fTSSHi
https://amzn.to/2fTSSHi
https://amzn.to/2fTSSHi

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12

package com.cleancodeacademy.javaBook;

public class ZooTest {

 public void feed(Animal[] animals) {
 for (Animal animal : animals) {
 animal.eat();
 animal.grow();
 }
 }
}

Example 2

We are iterating through the array of animals with an arbitrary example
where each animal eats and grows. All of these animals probably eat in a
different way, but as we can see, they are told to eat and grow no matter
what. For example, a gorilla would eat leaves and insects while a tiger
would eat meat. The idea is for each Animal subtype to have its own
concrete implementation; its own way of eating as specified by its eat
method.

To reinforce the idea, we also have the grow method. My idea is for grow
to be a concrete method, while eat is an abstract method – with both
methods residing in the Animal class. This would mean that all animals
grow at the same rate while eating differently.

Inheritance

Let’s jump to our first iteration of the Animal class:

134

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12

package com.cleancodeacademy.javaBook;

public class Animal {

 public void eat() {
 System.out.println("Animal is eating");
 }

 public void grow() {
 System.out.println("Animal is growing");
 }
}

Example 3

As you can see, our Animal class has two concrete methods: eat and
grow. Later on we will make grow abstract. We have both methods print
out to the console, which is something we should generally avoid.
However, for our example where we’re demonstrating something, this
would be an exception to the rule, but avoid doing it in real code. As you
can see, this class looks very much like any regular class you have seen
so many times before.

Now, let’s take a look at the Dog class. Say we want to declare Dog as an
Animal. If Animal were an interface, we would use the implements
keyword. Since it's a class, we express its subclass relationship with the
extends keyword instead. Quite simply, we say “Dog extends
Animal” and voilà, we’ve just used inheritance.

1
2
3
4
5
6

package com.cleancodeacademy.javaBook;

public class Dog extends Animal {

}

Example 4

135

Java for Passionate Developers

Now it might look like the Dog class is empty but in fact we can already
use eat and grow with Dog. We can also create the Gorilla and Tiger
classes in the same way, but I won’t show them here. Instead, let’s move
on and mix implementing interfaces and extending classes by
implementing two interfaces: Loggable and Printable. The question
now becomes, which comes first: extends or implements? There is a
syntax rule stating that extends should come first followed by
implements because of Java’s single inheritance model. We can only
extend a single class but we can implement any number of interfaces. We
reflect this in a change to the declaration of the Dog class:

1
2
3

4
5
6

package com.cleancodeacademy.javaBook;

public class Dog extends Animal implements Loggable,

Printable {

}

Example 5

Note the comma-separated list of interfaces, namely Loggable and
Printable, which Dog declares as its interfaces. These interfaces tell us
that our Dog class can play the role of a Loggable. For example, we can
print and log our Dog object since it can play the role of a Loggable. You
can learn more about this in the chapter about Interfaces in Java.

If we wanted all animals to implement Loggable and Printable, we
could implement these interfaces in the Animal class (and remove them
in Dog to avoid duplicate code).

Multiple Inheritance

Although we can implement several interfaces, in Java we can only extend
up to one class, so we can’t say something like “Pig extends
Herbivore,Carnivore”. Note that this works in C++ and can be even

136

Java for Passionate Developers

nastier than single inheritance. The use of multiple inheritance can lead to
something called the Deadly Diamond of Death.

Abstract Classes

An abstract class is like a hybrid between an interface and a class. Simply
put, we are allowed to create both abstract and non-abstract methods in
an abstract class. Recall that for interfaces, we don’t have to explicitly
declare our methods abstract since all methods are abstract by default.
Because an abstract class can mix both abstract and non-abstract
methods, however, we have to explicitly use the abstract modifier for
abstract methods. Please note that, just like with interfaces, you cannot
create an instance of an abstract class.

An abstract class can extend another abstract class, which means it can
add further methods (both abstract and non-abstract), as well as
implement or override (abstract) methods of its superclass. The first
concrete class in a hierarchy of classes extending one another must
ensure that all abstract methods of the hierarchy are implemented.

Let’s make eat abstract in Animal. Since we know that each of our
subclasses will implement this method differently, there’s no reason to
provide a concrete implementation of this method in the Animal class.

public abstract void eat();

Example 6

However, declaring Animal abstract changes its meaning and behavior.
Since abstract classes cannot be instantiated, the compiler will no longer
allow us to instantiate an Animal object with new Animal. This is what
our Animal class looks like now:

137

https://en.wikipedia.org/wiki/Diamond_problem

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11

package com.cleancodeacademy.javaBook;

public abstract class Animal {

 public abstract void eat();

 public void grow() {
 System.out.println("Animal is growing");
 }
}

Example 7

When Should I Use Abstract?

Firstly, I’d like to note that there is no “golden rule of abstract”. Everything
with inheritance is extremely case by case, and even modifying your
program could change whether or not abstract should be used.

You should make a parent class abstract when you don’t intend for it to be
created. What is an animal? In this case you don’t intend to create an
Animal object; you’re only going to be creating tangible animals like
tigers, dogs and gorillas. That’s when you should make a class abstract.
When you only intend to use its children in your program.

You should make your methods abstract when you intend every child to
have a different implementation. If you know that there’s no “default”
eating behavior for an Animal, there’s no reason to write one that is going
to be overridden by every single class. If some or all of your children will
implement a method in the same way, you may want to write that method
and override it when necessary. This after all is why inheritance is useful in
the first place.

138

Java for Passionate Developers

Implementing an Abstract Method

Going back to our classes, we still have a few more bumps to iron out.
Now that the Animal class’ eat method is abstract, we are forced to
implement the abstract eat method for the other subclasses.

Implementing a method of an abstract class is done the same way as
implementing a method of an interface: by overriding. I briefly explained
overriding in the chapter on interfaces in Java. Here’s a quick recap, with
some extra detail:

Overriding a method is quite straightforward. In a subclass, declare a
non-abstract method with the same signature and return type as the
method you want to override The signature of a method consists of its
name and return type. No two methods in the same class can have the
same signature.

Additionally, it is good practice to add the @Override annotation
wherever you override a method. This clearly signals that the method is
meant to override another method, and helps the compiler alert us to any
mistakes we might make when trying to override a method.

For example, imagine that, when attempting to override a method, you
declare a method with the same name and return type as the original, but
a different parameter list. The compiler will consider this a completely new
method, and, without an @Override annotation, the code will compile
normally but not work as expected at runtime. By including the annotation,
the compiler knows to check that the method you are trying to override
actually exists, and it will throw an error if that check fails, before the code
is ever run.

Note:
Declaring multiple methods with the same name, but a different
parameter list is a common practice in Java programming known as

139

Java for Passionate Developers

overloading. Overloading a method can be quite useful in certain cases,
such as when some parameters of the original method are optional. As
per good naming conventions, a group of overloaded methods should all
perform the same or a very similar function.

As a practical example, let’s override the Animal eat method in the
Tiger subclass:

1
2
3
4
5
6
7
8
9

package com.cleancodeacademy.javaBook;

public class Tiger extends Animal {
 @Override
 public void eat() {
 System.out.println("Tiger is eating...");
 }
}

Example 8

Here, we have an example of a subclass’ implementation of eat. Each
Animal subclass would have its own specific logic for that method. A real
world implementation would probably not use a print line statement for
implementing eat, however, it’s good enough for our demonstration.

All of the logic that is common for all Animal subclasses, like grow,
belongs in the Animal class. It’s a double-edged sword, though. On the
one hand, it is very handy for code reuse, but on the other hand it makes
our program more complicated to understand. For example, someone
reading the code can’t tell for sure whether a Gorilla ages and eats with
the grow and eat methods of the Animal class or if it has its own
overriding grow and eat methods like the ones below.

140

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13
14
15

public class Gorilla extends Animal {

 @Override
 public void grow() {
 System.out.println("Gorilla is growing...");
 }

 @Override
 public void eat() {
 System.out.println("Gorilla is eating...");
 }
}

Example 9

This is similar to how you can just define any arbitrary exception to some
rule. You could say, “Well, my Gorilla doesn’t use the Animal grow
method but instead replaces it with its own.” But you want to make sure
you use this tool effectively. If your intention is to modify the functionality of
a method that was written in Animal, you can override it.

If you are intending to have a new method of the same name, but with
different parameters, you are not overriding, but “overloading” the method.
For example, we could have our grow method that increases an animal’s
size based on a default value and a “grow(int amount)” method that
grows by amount. Two methods with the same name can exist as long as
they have different parameters.

Changing Visibility

There is yet another dimension to inheritance, and for this we have to
introduce a new visibility modifier. The protected modifier gives visibility
of a member to any class in the same package, as well as to any
subclasses. Protected visibility is different from the package-private
visibility modifier in that the protected visibility modifier allows for a method

141

Java for Passionate Developers

to be accessed outside the package through inheritance. In this case, let’s
apply it to grow.

1
2
3
4
5
6
7
8
9

10

package com.cleancodeacademy.javaBook;

public abstract class Animal {
 public abstract void eat();

 protected void grow() {
 System.out.println("Animal is growing");
 }
}

Example 10

In our example, the protected modifier implies that the grow method of
Animal is visible to anything in the
com.cleancodeacademy.javaBook package, as well as to any
Animal subclass outside of that package. Both properties of protected
make using it complex, so much so that we will be going into even more
depth to understand why we should avoid using it. Among the visibility
modifiers in Java, only public has more access privileges than
protected.

When you override a method in a Java class, you are allowed to change
its visibility. However, you can only increase the visibility of members in
the child classes. This means that in this case, the only visibility modifiers
we can use for grow in Animal subclasses are protected and public.
In any Animal subclass, trying to make age private will result in a
compiler error which says, “Attempting to assign weaker access
privileges.” In the end, our abstract class Animal defines a contract or a
protocol, exactly like with interfaces. You are in fact promising any client
class in the Java universe that the client can in fact use any Animal
instances with all the public methods they provide. Just imagine how
messy it would be if it were optional for a class and its subclasses to fulfill

142

Java for Passionate Developers

the visibility contract. You would have a practically broken inheritance
model!

When we inherit the members of a class, we inherit both instance methods
and instance variables. This means that if Animal had a protected
weight variable, all its subclasses would inherit it. Say for instance that
when our Tiger grows, it adds a kilogram to its weight. It would look
something like our example below:

3
4
5
6
7
8
9

10

public class Tiger extends Animal {
 @Override
 public void grow() {
 super.grow();
 weight += 1.0;
 }
}

Example 11

One of the issues with the protected visibility modifier is that it has
incredibly complicated rules that make it very easy to mess up while
programming. It also violates encapsulation because Animal should be
the only one with access to its internal variables. Even though it’s possible,
I would never make use of the protected visibility modifier.

Now that we’ve completed our classes, we are finally in a position to run
our ZooTest. When we run it, each Animal subclass implements its own
eat method and if it lacks its own grow behavior it uses the one specified
in Animal.

Weaknesses in Inheritance

Inheritance can easily become extremely confusing and difficult to use. For
example, say you have five classes inheriting from one another in a
hierarchy. To understand the behavior of an object originating from this

143

Java for Passionate Developers

class hierarchy, you would have to understand the entire network of
classes as well as its interwoven dependencies. Every single method
could be overwritten in any or all of the classes in the hierarchy. Even
worse, a method of a child class can call all non-private methods of its
parent class by putting a preceding “super” before the method name of the
parent class. This allows the behavior of a (supposedly simple) method to
turn into a very tight sticky mush, and to turn basic inheritance into an
intransparent network of classes, highly dependent on one another. But
what if your client only needs you to create a few classes? Well, even that
could end up not working out.

Let me illustrate this briefly: Imagine you have an abstract Duck class with
several variants to implement, like MallardDuck and RedHeadDuck.
Both are Ducks, both fly and swim in the same way, so this could be a
justified reason to use inheritance. We provide a default implementation of
fly and swim in the Duck class for both MallardDuck and
RedHeadDuck, and an abstract method quack that both implement in
their own unique way.

Months later, we extend our system adding a RubberDuck and a
DecoyDuck. The abstract method quack has to be implemented for both,
however, RubberDuck will internally squeak instead. DecoyDuck neither
quacks nor squeaks, so we provide an empty implementation quack in
DecoyDuck. We also don’t want our RubberDuck and DecoyDuck to fly.
All of these changes are implementable, but our design that once shone
with beauty and flexibility is starting to be more of a pain than a help.

There is a better solution. We could use a more flexible approach, known
as the Strategy Pattern! To start, you replace abstract class Duck with an
interface Duck. Since it’s an interface it can only contain abstract
methods for fly, swim and quack. Second, you define concrete classes
for MallardDuck, RedHeadDuck, RubberDuck and DecoyDuck, each
implementing the interface Duck.

144

Java for Passionate Developers

Now we define three more interfaces: FlyingBehavior,
SwimmingBehavior, and QuackingBehavior – and provide various
implementations for each. For example, FlyingWithWings, Quacking
and Squeaking, and so on. As RubberDuck and DecoyDuck both don’t
fly and DecoyDuck doesn’t even quack we also have to provide a
NotFlying and NotQuacking implementation. Still not very nice, but
much nicer than using inheritance. Now, all ducks won’t have a default
implementation.

Using the strategy pattern, it will never happen that a Duck is suddenly
flying on production, when it should not. Things are more clear. On top of
this, this design is way more flexible – you can exchange the behavior at
runtime.

20
21
22
23
24

if (summer) {
 flyBehavior = new FlyingWithFastWings();
} else {
 flyBehavior = new FlyingWithWings();
}

Example 12

In conclusion, there are sometimes justified cases of inheritance, but later
the requirements change, and using inheritance can quickly become a
maintenance nightmare. On the other hand, even in cases where using
inheritance is advised, it usually doesn’t hurt to still decide against its
usage. I wanted to illustrate for you how problematic inheritance is,
although it may not seem so at first. I also wanted to show that there are
great alternatives to using it. The above example of a strategy pattern was
taken from Head First Design Patterns, a book I highly recommend that
you read.

As a rule of thumb, don't use inheritance. For the last five years of Java
development, I haven’t used inheritance a single time. Instead you should
utilize interfaces whenever possible, as I have been doing in my work.

145

https://amzn.to/2wZEiBS

Java for Passionate Developers

Chapter 19
The Object Finalize Method

In this chapter, I will be discussing the Object finalize method in Java.
The class Object, which is the superclass of all classes, defines the
finalize method as well as other methods including clone, toString,
hashCode and equals.

What is the Purpose of the Finalize Method?

finalize is a “hook method” of the class Object. In programming, a
“hook” is a mechanism to “hook” into an existing process and extend its
functionality. A “hook method” is one way to realize a hook in Java by using
inheritance. The hook method is an empty method of a base class.
Typically, the hook method is already called by users of the base class,
with no effect, since the base method is empty. However, by overriding this
method in a child class, the overridden implementation can be executed
automatically by callers of the hook method.

According to the Java 8 documentation, the finalize method is called
by the Garbage Collector when there are no more references to the object
from active parts of an application. The usual purpose of this method is to
perform cleanup actions just before the object is irrevocably discarded.

The Garbage Collector

The garbage collector, as its name suggests, collects the “garbage” of your
program. The garbage that’s being cleaned up are the objects that you
created, processed on, and then later put aside when you no longer

146

https://marcus-biel.com/hashcode-and-equals/
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#finalize--

Java for Passionate Developers

needed them. The garbage collector’s main responsibility is to free up
memory resources so that your program hopefully never runs out of
memory. However, the garbage collector runs asynchronously, and we
have no control or influence over if and when it will be running. We can
give it recommendations, but they are just that - recommendations.The
garbage collector is not bound by them.

A computer uses several types of hardware resources, and these are
physically limited by nature. Therefore, we have to use these resources
wisely. In Java, unlike in older programming languages like C++, memory
is automatically managed by the garbage collector. However, there are
other resources, usually “IO resources”, that we need to manage by
ourselves.

The “I” of “IO” stands for input, and the “O” stands for output. Therefore, IO
is a general term for input or output functionality (also referred to as
communication) from a resource such as a file, an external system, or a
database. Input is read into our system, while output is written from our
system. A typical name for a class or interface that is used to read input is
“Reader”, while a typical name for a class or reader that is used to write
output is “Writer”.

These resources must be requested when needed, and released when not
needed anymore. As this is rather tedious, the idea was to automatically
release them just before the objects that are using them are discarded, and
hence, the finalize method was born. However, as there is no
guarantee that the finalize method will ever be called, there is no
guarantee that those resources will ever be released either, and therefore
the finalize method is useless. If you’re interested in learning more
about this you could read Effective Java by Joshua Bloch, where he’s done
a lot of interesting research on the subject. For example, he’s tested and
found that creating an object and destroying it using an overridden
finalize method is 430 times slower than using the inherited method.

147

https://amzn.to/2FEQgV2

Java for Passionate Developers

Overriding Finalize

In order to have the finalize method run, let’s implement a Porsche
class that overrides it.

I introduced overriding and overloading, and the fundamental differences
between the two in a previous chapter, Interfaces in Java. If you are
unfamiliar with either concept, I suggest you check out that chapter before
continuing.

3
4
5
6
7
8
9

10
11

public class Porsche {

 private IOReader ioReader = new IOReader();

 @Override
 protected void finalize() {
 ioReader.close();
 }
}

Example 1

Implementing the finalize method is easy. We simply release all
resources that the object about to be garbage collected currently holds.

For example, let’s say that we have an IOReader that reads a character
stream from a file. Once we are finished, we would like to close this reader
so that the file can be used by another process. To do this, the IOReader
class already provides a close method, so our finalize method can
simply call that.
However, there are problems with the finalize method. First, as already
mentioned, we do not have any guarantee that this method will ever be
called. It is totally under the JVM’s control, and outside of our influence.
The second problem is that if within this code we have any exception that
is not handled, the process will stop and the objects will remain in a weird
“zombie” state, which slows down garbage collection.

148

Java for Passionate Developers

The Alternative to Finalize

As you can tell, the problem with the finalize method in Example 1 has
nothing to do with our specific implementation, but rather with the way the
finalize method actually works, and there is actually no way for us to fix
that. In fact, since the release of Java 9, finalize has been officially
deprecated, so no new code should ever use it.

The recommended alternative is to create our own close method which
cleans up/closes all the resources no longer in use, in this case IOReader.
This way we have more control over our resources, and aren’t depending
on the garbage collector.

3
4
5
6
7
8
9

10
11

public class Porsche {

 IOReader ioReader = new IOReader();

 public void close() {
 ioReader.close();
 }

}

Example 2

Let’s also write a draft of closing an object in the CarSelector class.
First, let’s create the CarSelector class and add a Porsche object with
the following line: Porsche porsche = new Porsche; and use our
new close method. We’ll surround this in a try, catch, finally block and use
our finally block to clean up our Porsche. The critical point here is that you
have a finally section at the end, because the cool thing about finally is
that, even if an exception occurs, it is guaranteed to always be executed,
which is exactly what we need to solve our problem and make sure all
non-memory resources are always freed. Here is how you can do it
properly in Java:

149

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

package com.marcusbiel.javaBook;

public class CarSelector {

 public static void main(String[] arguments) {
 Porsche porsche = new Porsche();

 try {
 /* some code */
 } finally {
 porsche.close();
 }
 }
}

Example 3

This way we guarantee that once we are done with our porsche object,
we will close all of the affiliated resources involved without overwriting
finalize. The finally block does exactly what we wanted our finalize
method to do.

The finalize method is extremely flawed. The garbage collector has a
mind of its own and we can’t truly control when and how it operates. Since
overriding the finalize method doesn’t effectively solve our problem,
you can instead use a try-(catch)-finally block to close any extra resources
when you’re done with an object. Since the close method is our own
method, unaffiliated with the garbage collector, it works exactly as
intended, every time.

150

Java for Passionate Developers

Chapter 20
The Object Clone Method

In this chapter, I will be discussing the Java Object clone method. The
clone method is defined in class Object which is the superclass of all
classes. The method can be used on any object, but generally, it is not
advisable to use this method.

The Clone Method

The clone method creates a copy of an object. Depending on the type of
implementation, this copy can either be a shallow or a deep copy. In any
case, it creates a new, distinct object that has the same value as the
original. (For more details see the chapter about Identity and Equality in
Java).

Using Clone on an Object

Let’s take a look at how the clone method works. In Example 1, we
create an object of class Porsche named marcusPorsche, giving me a
very nice new car. However, I’m a nice guy and I’d like to give away
another Porsche, so I’ll clone the marcusPorsche object and assign the
new object to the reference variable peterPorsche. If your name is
Peter, congratulations! You just got a new Porsche!

151

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12

package com.marcusbiel.javaBook;

public class PorscheTest {

 @Test
 public void shouldClonePorsche() {
 Porsche marcusPorsche = new Porsche();
 Porsche peterPorsche = porsche.clone();
 assertNotSame(marcusPorsche, peterPorsche);
 }
}

Example 1

However, something is still wrong. The clone method is red. The problem
is that the clone method from class is Object protected. Every object
can call protected methods inherited from the Object class on itself.
However, it can never call such a method on other objects. While clone is
accessible to both our Porsche class and our PorscheTest class, the
PorscheTest can never call the inherited clone method of a Porsche
object.

To fix this problem, we have to override the clone method in the
Porsche class and increase its visibility. First, we change the access
modifier of the clone method to public and change the method return
type from Object to Porsche, which makes our code clearer since we
don’t have to cast cloned objects into Porsches. To implement the clone
method, we call “super.clone()”. The super keyword means that we
are calling a method from a superclass, which in this case is the Object
class.

Note also that the clone method of the Object class is declaring a
checked CloneNotSupportedException, so we have to decide
whether we want to declare it or handle it. Declaring a
CloneNotSupportedException while implementing (supporting) the
clone method is contradictory. Therefore, you should omit it. All possible

152

Java for Passionate Developers

error situations are serious errors, so the best you can possibly do is to
throw an Error instead.

1
2
3
4
5
6
7
8
9

10

11
12
13
14

package com.marcusbiel.javaBook;

public class Porsche implements Car {

 @Override
 public Porsche clone() {
 try {
 return (Porsche) super.clone();
 } catch (CloneNotSupportedException e) {
 throw new AssertionError(); /* can never

happen */
 }
 }
}

Example 2

However, when we run the above code, we encounter another issue: a
CloneNotSupportedException. To correct that, we have to implement
the Cloneable interface. The Cloneable interface does not contain any
methods, it is a marker interface – an empty interface used to mark some
property of the class that implements it.

public class Porsche implements Car, Cloneable {

Example 3

Now when we run the test in Example 1, it passes successfully.

Modifying a Cloned Object

At this point, we’re going to add a test to check the content of the new
object. We want to verify that our owner has been correctly identified in

153

Java for Passionate Developers

each object. The asString method will be used to return a String
representation of our Porsche object. The expected result when we are
finished is for the object to be “Porsche of Peter”. First, I’m going to
create the asString method in our Porsche class and an owner
attribute.

8
9

16
17
18
19

String ownerName;

[...]

public String asString() {
 return "Porsche of" + ownerName;
}

Example 4

In the code below, the assertEquals method is used to compare the
output of the asString method. When we run the test, it will fail, as the
owner of both Porsche objects is still “Marcus”.

12
13
14
15
16
17
18

19

@Test
public void shouldClonePorsche() {
 Porsche marcusPorsche = new Porsche("Marcus");
 Porsche peterPorsche = porsche.clone();
 assertNotSame(porsche, peterPorsche);

 assertEquals("Porsche of Peter",

peterPorsche.asString());
}

Example 5

To fix this test, we need to create a method for transferring ownership of
the Porsche. I’m going to call this method sellTo.

154

Java for Passionate Developers

9
10
11

public void sellTo(String newOwnerName) {
 ownerName = newOwnerName;
}

Example 6

Now I will call the sellTo method on the cloned Porsche object, to
transfer ownership of the cloned Porsche to “Peter”. As a final proof
that cloning the Porsche object created a fully independent second
Porsche object, I will test whether transferring the ownership of the
cloned Porsche object to “Peter” did not influence the original
Porsche object. In other words, I will test whether the original Porsche
object still belongs to “Marcus” or not.

29
30
31
32
33
34
35
36

37

38

@Test
public void shouldClonePorsche() {
 Porsche marcusPorsche = new Porsche("Marcus");
 Porsche peterPorsche = porsche.clone();
 assertNotSame(marcusPorsche, peterPorsche);

 peterPorsche.sellTo("Peter");
 assertEquals("Porsche of Marcus",

marcusPorsche.asString());
 assertEquals("Porsche of Peter",

peterPorsche.asString());
}

Example 7

This time, when we run the test, it will pass. This proves that we have
created two independent objects that can be changed independently, so
our cloning method works as expected.

Using Clone on an Array

As I've said before, it is generally not advisable that the clone method be
used. However, one case where I do recommend its use is for cloning

155

Java for Passionate Developers

arrays, as shown in example 8. Here, we create an array of type String.
We call the array clone method and assign the new cloned array to a
reference variable called copiedArray. To prove that this not just a
reference to the same object, but a new, independent object, we call the
assertNotSame with our original array and our newly created
copiedArray. Both arrays have the same content, as you can see when
we print out the copiedArray in a for-each loop.

8
9

10
11
12
13
14
15
16

@Test
public void shouldCloneStringArray() {
 String[] array = { "one", "two", "three" };
 String[] copiedArray = array.clone();
 assertNotSame(array, copiedArray);
 for (String str : copiedArray) {
 System.out.println(str);
 }
}

Example 8

The clone method copies every String object in the array into a new
array object that contains completely new String objects. If you ran the
code above, the clone method would work as expected and the test
would be green. In this case, the clone method is the preferred technique
for copying an array. clone works great with arrays of primitive values
and “immutable objects”, but it doesn’t work as well for arrays of objects.
As a side note, in the Java Specialists’ Newsletter Issue 124, by Heinz
Kabutz, a test was performed that showed that the clone method is a bit
slower for copying very small arrays, but for large arrays, where
performance matters most, it’s actually faster than any other method of
copying arrays.

156

http://www.javaspecialists.eu/archive/Issue124.html
http://www.javaspecialists.eu/archive/Issue124.html

Java for Passionate Developers

Alternatives to Clone: The Copy Constructor

There are two recommended alternatives to using the clone method that
deal with the shortcomings of clone. The first method is using a copy
constructor that accepts one parameter – the object to clone. A copy
constructor is really nothing very special. As you can see in Example 8, it
is just a simple constructor that expects an argument of the class it
belongs to.

The constructor then copies (clones) all sub-objects. If the new object just
references the old sub-objects, we call it a shallow copy. If the new object
references truly copied objects, we call it a deep copy. You can learn
about this topic by reading the chapter Shallow vs Deep Copy.

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.marcusbiel.javaBook;

public class BMW implements Car {

 private Name ownersName;
 private Color color;

 public BMW(BMW bmw) {
 this.ownersName = new Name(bmw.ownersName);
 this.color = new Color(bmw.color);
 }
}

Example 9

Alternatives to Clone: The Static Factory Method

The other alternative is a static factory method. As the name implies, a
static factory method is a static method, used to create an instance of the
class. It can also be used to create a clone. There are a few common
names for static factory methods; I’m going to use newInstance. I’ve also
created the same method for Name and Color, in order to recursively

157

Java for Passionate Developers

perform the operation on all sub-objects.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package com.marcusbiel.javaBook;

public class BMW implements Car {

 private Name ownersName;
 private Color color;

 public static BMW newInstance(BMW bmw) {
 return new BMW(Name.newInstance(bmw

.ownersName), Color.newInstance(bmw.color));
 }

 public BMW(Name ownersName, Color color) {
 this.ownersName = ownersName;
 this.color = color;
 }
}

Example 10

Both of these alternatives are always better than the clone method and
produce the same result: a clone of the original object. The static factory
method might be a bit more powerful than the copy constructor in certain
cases, but generally both lead to the same result.

Note:
One of the things that make static factory methods slightly more
powerful than public constructors is their ability to have a polymorphic
return type. For example, you can declare a static factory method to
return a Car, but then return a BMW in the method’s implementation. In
the case of copying objects, this advantage isn’t that significant, and a
public copy constructor will serve you just as well. However, there are
cases where a polymorphic return type can be incredibly useful in

158

Java for Passionate Developers

encapsulating certain parts of a system. For more information, check out
the chapter on polymorphism, and my blog post about encapsulation.

Immutable Classes

The last thing I’d like to do in this chapter is take a look at the Name class:

1
2
3
4
5
6
7
8
9

10
11

package com.marcusbiel.javaBook.car;

public class Name {
 private String firstName;
 private String lastName;

 public static Name newInstance(Name name) {
 return new Name(name.firstName, name.lastName);
 }
}

Example 11

Notice however, that the String instances are passed by reference,
without creating a new object. The reason for that is that String objects
are immutable. An immutable object is an object that, once created, can
never be changed. Therefore it can safely be shared without the need for
cloning.

That’s all I have to say about the clone method. For more information on
the different types of object copies, feel free to check out the Shallow vs
Deep Copy chapter.

159

https://marcus-biel.com/getters-and-setters-are-evil/

Java for Passionate Developers

Chapter 21
The Java Object toString() Method

The Object toString() method returns a string that represents the
object to the user that can be printed to the console or a user interface.
Let’s take a look at the default toString() method of the class Object.

235
236

237

public String toString() {
 return getClass().getName() + '@'

+ Integer.toHexString(hashCode());
}

Example 1

Example 1 shows how the toString() method concatenates the
getClass().getName() method, an ‘@’ symbol and a hexadecimal
value for the object’s hashCode to create a string that represents the
object. The getClass() method returns the runtime class of the class the
object belongs to. The getName() method then returns the full-fledged
class name. For example, if you have a class “BMW” in the package
“com. cleancodeacademy. javaBook” and you instantiate a BMW object,
a call to getClass().getName() will return
“com. cleancodeacademy. javaBook.BMW”. The
Integer.toHexString(hashCode()) method creates a hexadecimal
representation of the object’s hashCode. Here is a brief example of a
method that would utilize a toString() call:

160

Java for Passionate Developers

10
11
12

13
14
15

@Test
public void shouldConvertBMWToString() {
 BMW bmw = new BMW(new Name("Marcus", "Biel"), new

Color("silver"));
 System.out.println(bmw.toString());
 System.out.println(bmw);
}

Example 2

Both of the System.out.println() lines in Example 2 call Object
toString(). This is because the println() method is overloaded,
meaning that it exists in several different variations that expect different
arguments. The first variation is expecting to print a string. Meanwhile, the
second call is expecting an object, which it then proceeds to call the
String.valueOf() method, which will then call the toString()
method. Please note that in production, generally speaking, you should
use logging instead of System.out.println(). While
System.out.println() works well for debugging or diagnostic
information in the console, it lacks the flexibility of logging in terms of
output. A logger also normally yields better performance.

Returning to the method above, either System.out.println() call will
return BMW@e2144e4. That String isn’t very useful to us, especially if we
are debugging the code and trying to understand the current state of the
object. Presumably, if we are calling a BMW object toString() we know
it’s a BMW object. For that reason, you should override the toString()
method for most entity classes.

161

Java for Passionate Developers

Overriding the Object toString() Method

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.cleancodeacademy.javaBook.car;

public class BMW implements Car, Cloneable {

 private Name ownersName;
 private Color color;

 public BMW(Name ownersName, Color color) {
 this.ownersName = ownersName;
 this.color = color;
 }
}

Example 3

Here you can see the BMW class that I referenced in my previous example.
As you saw in the last section, when we call
println(bmw.toString()), we get something like BMW@e2144e4.
That is because we have not overridden the toString() method as of
yet. Before we override the method, we should define what we want it to
return. In the case of this class, it has two attributes: ownersName and
color. We also may want to return what type of class the object is, and
we can easily do that by calling the getClass() method I highlighted
before.

220

221

222

223

@Override

public String toString() {
 return getClass().getName() + " [" + ownersName

+ ", " + color + "]";
}

Example 4

162

Java for Passionate Developers

Above, I have overridden the toString() method for the BMW class. I
used the @Override as a tool that I can use even though it is not
necessary for the code to run. It causes my compiler to make sure that I’m
actually overriding a method (and not just writing a new method), and
allows someone reading my code to realize that I’m overriding a method.
Another point that I’d like to highlight is that I’m not writing
color.toString(). This is unnecessary because the “+” sign between
Strings allows the compiler to realize that I am concatenating strings, and
automatically calls the toString() method for these objects.

10
11
12

13
14

@Test
public void shouldConvertBMWToString() {
 BMW bmw = new BMW(new Name("Marcus", "Biel"), new

Color("silver"));
 System.out.println(bmw.toString());
}

Example 5

If I run this method again, assuming that we have created the Name
toString() and the Color toString() methods, our output will now
be “BMW [Marcus Biel, silver]”. Now when we call the
toString() method we have something more meaningful than the
hashCode that we can print to the console, log, or print to a user interface
that will allow the user to see the content of the object.

StringBuilder: An Alternative to String
Concatenation

The final thing I’d like to highlight in this chapter is the StringBuilder
class. String-concatenation with the “+” can cost a small amount of
performance per call, and if you have a loop concatenating millions of
strings this small difference could become relevant. However, since the
compiler will replace string concatenation and use a StringBuilder in
most cases, you should go for the code that is the most readable first.
Further optimize for performance only when needed, covered by tests.

163

Java for Passionate Developers

Below, here is an alternative toString() method that uses
StringBuilder rather than concatenating the string. It will create the
string dynamically, without all the plusses.

10
11
12

13

@Override
public String toString() {
 return new StringBuilder("BMW [").append(ownersName)

.append(",").append(color).append("]").toString();
}

Example 6

164

Java for Passionate Developers

Chapter 22
Static Imports, Data Types, and

More!

In this chapter, I will explain a variety of topics that haven’t yet been
covered.

Static Imports

In this section I’m going to discuss static imports. In Example 1 below, we
can see a small, simple test class that imports two classes of the JUnit
framework, Test and Assert:

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.cleancodeacademy.javaBook;

import org.junit.Test;
import org.junit.Assert;

public class DemoTest {

 @Test
 public void shouldDemonstrateStaticMethodCall() {
 Assert.assertTrue(true);
 }
}

Example 1

165

Java for Passionate Developers

In line 10, we are calling the static assertTrue method of the Assert
class. As it is a static method, we have to prefix the method with its class
name. There is, however an alternative way of importing and using static
methods, as Example 2 below demonstrates:

4 import static org.junit.Assert.assertTrue;

Example 2

This is a so called “static import”. It allows us to use the static method
assertTrue without having to prepend its class name, as you can see in
Example 3, line 10, below:

1
2
3
4
5
6
7
8
9

10
11
12
13

package com.cleancodeacademy.javaBook;

import org.junit.Test;
import static org.junit.Assert.assertTrue;

public class DemoTest {

 @Test
 public void shouldDemonstrateStaticImport() {
 assertTrue(true);
 }
}

Example 3

An even more flexible alternative is demonstrated in Example 4 below:

4 import static org.junit.Assert.*;

Example 4

166

Java for Passionate Developers

The * allows you to use all currently visible static variables and methods of
a class, without having to prepend the class name.

You should note that if a static method or variable with the same name
exists in two different classes, you can only import one method by using a
static import. For the second method you would have to use the full
fledged name, similar to the regular import statement.

Note:
The ability to statically import methods is a useful feature of the Java
language, and its use can make code clearer and less cluttered.
However, care should still be taken when using the feature, as it could
also have exactly the opposite effect.
In short, before statically importing a method, first consider whether or
not each one’s use would be clear in that context for other developers
reading the code.

Data Types and their Default Values

In this next section of the chapter I’m going to discuss the default initial
values for instance and static variables. Let’s have a look at all possible
default values in Java by simply printing them out:

4
5
6
7
8
9

10
11
12
13
14
15

private byte myByte;
private short myShort;
private int myInt;
private long myLong;
private float myFloat;
private double myDouble;
private Object myObject;
private boolean myBoolean;
private char myChar;

/* continued below */

167

Java for Passionate Developers

16
17
18
19

20
21
22

23

24

25

26
27

28

@Test
public void shouldDemonstrateDataTypeDefaultValues() {
 System.out.println("byte default value: " + myByte);
 System.out.println("short default value: " +

myShort);
 System.out.println("int default value: " + myInt);
 System.out.println("long default value: " + myLong);
 System.out.println("float default value: " +

myFloat);
 System.out.println("double default value: " +

myDouble);
 System.out.println("Object default value: " +

myObject);
 System.out.println("boolean default value: " +

myBoolean);
 System.out.println("char default value: " + myChar);
 System.out.println("char default value as int: " +

(int) myChar);
}

Output:
byte default value: 0
short default value: 0
int default value: 0
long default value: 0
float default value: 0.0
double default value: 0.0
Object default value: null
boolean default value: false
char default value:
char default value as int: 0

Example 5

For all of the number types, their default values are zero. Objects are set
by default to null, and booleans are by default false. You may wonder why
the char default value appears to be blank. The default value of char is
actually ‘\u0000’, which is known as the null character. As you can see,
there is no visual representation of this character. However, if you convert
the default char value to an int, it is printed as “0”.

168

Java for Passionate Developers

Number Types

There are seven different number types that can be utilized in Java. I'm
going to explain them for you now in more detail. The first four number
types that I’ll highlight are the byte, short, int, and long datatypes. All
four of these can only store integer values. However, they have different
ranges, as you can see in the table at the end of this section. Usually,
programmers use int because the difference in memory space between
number types is, in most cases, practically irrelevant these days. In some
cases you might need to use long if your numbers are too large to be
stored as an int.

Float and double are two floating point number types. Again, you can see
their ranges below. If you have a decimal value in your code, it is
automatically considered a double. If you want to store it as a float, you
have to add a capital or lowercase F at the end of the decimal value, for
example, you’d type ‘13.63F’ instead of just ‘13.63’. If, however, you
wrote float myFloat = 13.63, that would cause an error indicating
that the compiler has found a double when a float is required. You
would have to instead type ‘float myFloat = 13.63F.’

Number Ranges:

Number
Type

Number
of Bytes

Minimum Value Maximum Value

byte 1 -128 127

short 2 -32768 32767

char 2 0 65535

int 4 -2147483658 2147483647

169

Java for Passionate Developers

long 8 -9223372036854775808 9223372036854775807

float 4 1.4E-45 3.4028235E28

double 8 4.9E-324 1.7976931348623157E
308

Table 1

Signed vs. Unsigned Data Types

Another thing I’d like to highlight is the difference between signed and
unsigned data types. Signed means that if you were to print the value of
the data type, you might see a negative sign. For example, the byte has a
range from -128 to 127. You might wonder why the range ends with 127
instead of 128. This is because Java uses that space to store the positive
or negative sign of the number.

An example of an unsigned data type is a char. A char stores a single
character. However, you can cast a char to a number as shown in
Example 6 below. In this case it is always a positive number, making the
valid range of char from 0 to 65535.

25
26

char myChar = ‘s’;
System.out.println("char default value as int: " +

(int) myChar);

Output:
116

Example 6

Wrapper Types

Another nuance about primitive types is that they exist in parallel as
objects, known as “Wrapper Types”.

170

Java for Passionate Developers

Byte b = Byte.valueOf(myByte);
Example 7

In Example 7 above, we have a variable b initialized using the valueOf()
method. The valueOf() method is a static method that converts the
primitive data type byte into a Byte object. By using valueOf(), a
cached Byte object is returned which will save us some memory. To
create a fresh object, you would say, ‘new Byte(myByte)’, but generally
that should not be necessary.

One of the reasons wrapper objects are useful is that they can be used in
Collections. Collections are a structure similar to arrays, but they’re much
more flexible. Collections are very useful because you can throw objects in
and take them out at will. However, you cannot throw primitive types into a
collection. To work around this, we have number objects that are
“wrapped” around primitive values.
All number wrapper types extend the abstract type Number. By doing this,
they all implement
Number functions and can be handled uniformly. This allows them to be
converted back into primitive types.

Auto-Boxing and Auto-Unboxing

In Java 5, automatic conversion of numbers to and from their
corresponding wrapper objects was introduced, called auto-boxing and
auto-unboxing, respectively. It is heavily used by developers, however, I
recommend that you avoid using it because it could cause nasty
NullPointerException errors or performance issues. All primitive
values can’t be null, so using them will never throw a
NullPointerException. However, when you don’t initialize an object, the
value will be null and then when you call, say b.byteValue(), this throws a
NullPointerException. You won’t actually see it when you write the
code, because the compiler will automatically convert the wrapper object

171

Java for Passionate Developers

into the primitive data type, but you will see it when you run the code.
Instead, you should typically use the static valueOf() method to convert
your primitive values to their wrapper types.

Base 2, Base 8, and Base 16

Java enables us to not only save numbers using Base 10, but also Base 2,
Base 8, and Base 16. This can be useful if, for example, you have a
hexadecimal value in your documentation and you want to have the same
value in your code. No matter what number system you use, it has nothing
to do with how the values are stored. The computer will always store them
in memory as zeros and ones, no matter the format. Moreover, they will by
default be printed out in Base 10 just like a regular number.

Base 2 was introduced in Java 7. Before that, you could only store in Base
10, Base 8, and Base 16. In the code below, you can see some values in
various bases. In the example below, I apply underscores to make the
numbers more readable. You can add them almost anywhere and in any
amount. The only places you cannot add an underscore are at the
beginning or end of the number.

10
11
12
13
14
15
16
17
18

@Test
public void shouldDemonstrateBases(){
 int binary = 0B1010_1011_0111;
 int octal = 017;
 int hex = 0xAB_45_CB;
 System.out.println(binary);
 System.out.println(baseEight);
 System.out.println(hex);
}

Output:
2743
15
11224523

Example 8

172

Java for Passionate Developers

As demonstrated in Example 8 above, you can initialize primitive variables
also with values from alternate number systems. Also you should notice
that they are printed in decimal format by default.

A binary value is indicated by preceding the value with "0B", as line 12
shows. For octals (base 8), the value starts with a “0”. A hexadecimal
value is indicated by preceding the value with "0x", as in line 14.

We've covered quite a few different topics here, focusing a lot on
variables. We had a look at static imports, as well as the default initial
values for instance and static variables. We looked in detail at number
types and their ranges, and examined the difference between signed and
unsigned data types. We also dealt with wrapper types, then looked briefly
at auto-boxing and auto-unboxing, and why you should avoid using them.
We ended with a quick look at different number bases that we can use to
store numbers in Java. That's quite a few different topics, but I hope
you've managed to follow along.

173

Java for Passionate Developers

Chapter 23
Java Collections Framework

In this chapter, you will be given a high-level introduction to the Java
Collections Framework. The term ‘Collection’ has several meanings,
unfortunately. To clear things up, we will first discuss the word's different
meanings.

‘Collection’ can refer to:

● its day-to-day meaning as a compilation or group of things.
● the collection of interfaces and classes that make up the Java

Collections Framework.
● some data structure like a box or container that can hold a group of

objects like an array.
● the java.util.Collection interface, one of the two main

interfaces of the framework.
● java.util.Collections, a utility class which can help to modify

or operate on Java collections.

This piece is based on Chapter 11 of the OCA/OCP Study Guide, a book
packed with knowledge on Java programming. As a great fan of the
authors, Kathy Sierra and Bert Bates, I recommend that you read the book
even if you don’t plan on being a certified Java programmer.

What is the Java Collections Framework, from a high-level perspective?
First of all, it is a library, a toolbox, of generic interfaces and classes. This
toolbox contains various collection interfaces and classes that serve as a
more powerful, object-oriented alternative to arrays. Collection-related
utility interfaces and classes also make for better ease of use.

174

https://www.amazon.com/gp/product/0071591060/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0071591060&linkCode=as2&tag=marcusbiel-20&linkId=NO2LPJ7A2M7QHVHZ
https://www.marcus-biel.com/oracle-java-certification/

Java for Passionate Developers

Overview

In this section, we will be going into more detail as we delve into the
interface and class hierarchy for collections. Unlike arrays, all collections
can dynamically grow or shrink in size. As I said before, collections hold
groups of objects. A map can store strongly-related pairs of objects
together, each pair being made up of a key and a value. A value does not
have a specific position in a map, but can be retrieved using the key it is
paired with. Don’t worry if this is too much to take in right now as we will
take a more detailed look later on.

Figure 1, the Collection hierarchy

Figure 1 shows the hierarchy of classes and interfaces extending or
implementing the Collection interface – it would be useful to at least
familiarize yourself with the names listed there. The Collection interface
sits on top of a number of sub-interfaces and implementing classes. A
Collection can hold a group of objects in different ways which Set, List and
Queue provide. A Set is defined as a group of unique objects. What is

175

Java for Passionate Developers

considered to be unique is defined by the equals method of the object
type it holds. In other words, a Set cannot hold two equal objects. A List is
defined as a sequence of objects. In contrast to a Set, a List can contain
duplicate entries. It also keeps its elements in the order in which they were
inserted. A Queue has two sides. Entries are added to its tail end, while
entries are removed from the top or the head. This is often described as
“first-in, first-out” (FIFO), which is often much like waiting in line in real life,
i.e. the first person queuing up is the first person to leave the queue.

The Set Interface

HashSet, LinkedHashSet and TreeSet
HashSet, LinkedHashSet and TreeSet are implementations of Set,
located around the left end of the Collection interface hierarchy in
Figure 1. HashSet is the default implementation used in most cases.
LinkedHashSet is like a combination of HashSet and List in that it
does not allow duplicate entries as with a Set, but traverses its elements
in the order they were inserted, like a List would do. TreeSet will
constantly keep all its elements in some sorted order. Keep in mind,
however, that there is no such thing as a free lunch and that every added
feature comes at a certain cost.

SortedSet and NavigableSet
After looking at three classes implementing Set, let’s also take a look at
the two sub-interfaces we haven’t talked about yet. As the name implies,
SortedSet is a Set with the property that it is always sorted. The
NavigableSet interface, added with Java 6, allows us to navigate
through the sorted list, providing methods for retrieving the next element
greater or smaller than a given element of the Set.

176

https://marcus-biel.com/hashcode-and-equals/
https://marcus-biel.com/hashcode-and-equals/

Java for Passionate Developers

The List Interface

ArrayList and LinkedList
ArrayList is the default implementation for List, located to the middle
of the collection hierarchy in Figure 1. Like any List implementation, it
does allow duplicate elements and iteration in the order of insertion. As it
is based on arrays, it is very fast to iterate and read from, but very slow to
add or remove an element at random positions, as it has to rebuild the
underlying array structure. In contrast, LinkedList makes it easy to add
or remove elements at any position in the list, while being slower to read
from at random positions.

Vector
As a side note, we briefly mention java.util.Vector, a class that has
been around since JDK 1, before the Collections Framework which was
added with Java 2. Long story short, its performance is suboptimal, so new
code should never use it. An ArrayList or LinkedList simply does a
better job.

The Queue Interface

Lastly, we take a look at the classes implementing Queue. Another thing to
mention about LinkedList is that while it implements List, it actually
also implements Queue. It does so based on the fact that its actual
implementation as a doubly-linked list makes it quite easy to also
implement the Queue interface.

PriorityQueue
Besides LinkedList, another common Queue implementation is
PriorityQueue. It is an implementation that keeps its elements ordered
automatically. It has functionality similar to TreeSet, except that it allows
duplicate entries.

177

Java for Passionate Developers

The Map Interface

We now take a look at the Map interface, one which has no relation to the
Collection interface. A Collection operates on one entity, while a
Map operates on two: a unique key, e.g. a vehicle identification number,
and an object related to the key, e.g. a car. To retrieve an object from a
Map, you would normally use its key. Map is the root of quite a number of
interfaces and classes, as depicted on Figure 2.

Hashtable, HashMap, LinkedHashMap and TreeMap
The Hashtable class was the first collection that was based on the hash
table data structure. However, as with Vector, new code must never use
Hashtable, because of its suboptimal performance. We can forget about it
and use the other Map implementations instead.

HashMap is the default implementation of an unordered, unsorted Map.
LinkedHashMap is an implementation of an ordered Map. It allows us to
iterate the map in the order of insertion. Finally, TreeMap is a sorted Map.
It automatically sorts all the elements it stores.

Basically, if you need an ordered Map, go for a LinkedHashMap. If you
need a sorted Map, go for a TreeMap. In all other cases, go for a
HashMap, as it offers the best performance.

178

Java for Passionate Developers

Figure 2, the Map hierarchy

SortedMap
Let’s look at the interfaces that extend Map. As the name implies,
SortedMap extends Map and defines the contract of a constantly sorted
map. NavigableMap takes it even further, adding methods to navigate
sorted maps. This allows us to get all entries smaller or bigger than a
given entry, for example. There are actually many similarities between the
Map and Set hierarchies. The reason is that Set implementations are
actually internally backed by Map implementations.

The Bigger Picture

You might have noticed that Java’s Collection classes often contain
data structures based on their name. To choose the best collection for a
given situation, you have to compare and match the properties of data
structures like LinkedList, Hashtable or TreeSet to the problem at
hand. There is no single best option as each one has its own advantages
and disadvantages. This overview has only covered a tiny section of the
huge scope of Collection and Map classes. There are even

179

Java for Passionate Developers

concurrent containers in the Java Collections.

Generics

The subject of generics is very broad. For now, we'll just look at the
minimum we need to be able to understand the Java Collections
Framework. Save your questions for later- all will be made clear in time!

List<String> myList = new ArrayList<String>(100);

Example 1

Notice the usage of the angle brackets. To the left side, we define a List
variable myList with the String parameter in the angle brackets. We tell
the compiler that the myList variable will never refer to anything other
than a list of String objects. We then create an object of type
ArrayList and again tell the compiler that the list is supposed to only
contain Strings. In other words, this is what makes the containers
type-safe. Also note the use of the List type for the variable instead of
ArrayList. This makes our code more flexible. You will only ever create
the object once, but you will end up using it in many places. That being
said, when you declare a List instead of an ArrayList, you get to
replace the ArrayList with a LinkedList later on, and all you had to
change was that one line of code.

Collection<String> myList = new ArrayList<String>(100);

Example 2

In case you don’t really need methods specific to List, you could take it a
bit further and use Collection instead. It is a good idea to always use
the least specific, smallest interface possible as a variable type. Note the
use of 100 as the ArrayList constructor argument. In this case, it’s a
performance optimization. Since ArrayList and all hash-table-based
collections internally operate on arrays, when such a collection grows in
size, it creates larger arrays on the fly and transfers all contents from the

180

Java for Passionate Developers

old array to the new one. Although this takes some extra time, modern
hardware is so fast that this usually isn't a problem. On the other hand,
knowing the exact, or even just an approximate, size for the collection is
better than settling for the default size. Knowing what data structures Java
collections are based on helps you to get a better understanding of
performance in cases like this one. Paying attention to such small details
is often the difference between a regular developer and a software
craftsman.

Map<VIN, Car> myMap = new HashMap<>(100);

Example 3

See how a Map is declared and how HashMap is constructed above. A
map is a relation of one identifying key element to one value element and
both can be of different types. In the example above, VIN – the vehicle
identification number – is used as the key while a Car object is the value.
The type parameters are added as a comma-separated list in
angle-brackets. As of Java 7, if you declare the variable and create the
object all in the same line, you can leave the second pair of angle brackets
empty as the compiler infers the type of the object from the generic type of
the reference variable. The empty angle brackets are called the diamond
operator, because of their shape.

What has been discussed so far is just the usage of generic types, where
we define the types for the classes to operate on. All of this is only
possible if some method, interface, or class has been defined to be used
in a generic way beforehand.

Writing Generic Code

Example 4 shows a generically defined interface. In the first line, the
interface is defined as one operating on two generic types that will have to
be specified at a later time. When these types are locked in, the types the
interface methods use are automatically specified. If you see one-letter
types in code, it could mean that it can be used in a generic way.

181

Java for Passionate Developers

3
4
5
6
7

public interface MyInterface<E, T> {
 E read();

 void process(T object1, T object2);
}

Example 4

Other Utility Interfaces

● java.util.Iterator

● java.lang.Iterable

● java.lang.Comparable

● java.lang.Comparator

Listed above are some additional utility interfaces from the Java
Collections Framework. They are implemented by classes of the
framework or the JDK in general. Additionally, they can also be
implemented by your own classes, leveraging the features and
interoperability of the Collections Framework. Strictly speaking,
java.lang.Iterable is not part of the framework, but more precisely
sits on top of it. It is the super-interface of java.util.Collection,
which means that every class that implements Collection also implements
java.lang.Iterable.

java.util.Iterator
● boolean hasNext();

● E next();

● void remove();

An iterator is an object that allows us to traverse a collection, in the same
way that a remote control traverses through the channels of a TV.

182

Java for Passionate Developers

hasNext() returns true if a collection has more elements, next()
returns the next element in the iteration, while remove() removes the last
element returned by an iterator from its underlying collection.

java.lang.Iterable
● Iterator iterator()

Iterable provides only one method which returns an Iterator. Every
Collection that implements this interface can be used in the for-each
loop, greatly simplifying the usage of your home-made collections. To
make the for-each loop available for your collection, just execute two
simple steps: First, write an Iterator for your collection and implement
at least its hasNext, and next methods. Second, implement the
Iterable interface by adding an iterator method that returns an
instance of the Iterator implementation you wrote in the first step.

java.lang.Comparable
● int compareTo(T o)

Implementing the java.lang.Comparable interface defines a natural
sort order for your entities. The interface contains only one method you
need to implement, compareTo, which compares your Comparable with
T o, the argument representing another entity of the same type. Return a
negative integer if the object is less than the given argument o, 0 if the
object is equal to the o, and a positive integer if the object is greater than
o.

What it means for one thing to be “lesser or greater than another” is for
you to define. For numbers, it would easily follow that 1 is smaller than 5.
But what about colors? This entirely depends on what you believe to be
the natural ordering of your entities. When you put Comparable objects
into a TreeSet or TreeMap for example, it will use your custom-built
compareTo method to automatically sort all elements in your collection.
As you can see, the Java Collections Framework has been greatly
designed with extension in mind, offering many possibilities for you to plug
in your own classes.

183

Java for Passionate Developers

java.lang.Comparator
● int compare(T o1, T o2)

This interface is very similar to Comparable. It allows you to define
additional sorting orders, e.g. a reverse order. The sorting logic is not
directly implemented in your entity class. Instead, it is defined in an
external sorting strategy class that can optionally be attached to a
Collection or a sorting method to define alternative sorting orders for
your collections of entities. The same rules for the interface contract of
Comparable apply: return a negative integer if the first argument, o1, is
less than the second argument o2, 0 if both arguments are equal, and a
positive integer if o1 is greater than o2.

Collections and Arrays

Last, but not least, we take a look at the two utility classes
java.util.Collections and java.util.Arrays. Like a Swiss army
knife, both provide static helper methods that greatly enhance the general
usefulness of the Collection classes. Collections offers methods
like sort, shuffle, reverse, search, min, and max. Arrays is
actually quite similar to Collections except that it operates on raw
arrays, i.e. it allows us to sort or search through arrays, for example.

Summary

That's all you need to know for now about the Java Collections framework.
In summary, the Java Collections framework is one of Java's most
powerful subsystems that every Java developer needs to know. It consists
of a set of classes that represent containers, and utility classes that help
you to operate on these containers. The containers serve to store and hold
similar objects.

Make sure you know the different usage scenarios as well as the pros and
cons of the most important containers inside out!

For further details, you can look up the great Java 8 Collections
Framework API anytime.

184

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/reference.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/reference.html

Java for Passionate Developers

Chapter 24
ArrayList

In this chapter, I will be giving you a basic overview of the Java class
java.util.ArrayList. I will first explain the meaning of the size and
capacity of an ArrayList and show you the difference between them.
After that, I will explain some ArrayList methods, divided between the
interfaces Collection and List to which the methods belong. I will
finish off by giving you a few practical coding examples that will, for
instance, show you how to add and remove elements from an
ArrayList.

java.util.ArrayList

ArrayList implements the List interface, which again extends the
Collection interface. Figure 1 below shows an overview of the most
important classes that implement the Collection interface, including the
class ArrayList and how it fits in.

185

Java for Passionate Developers

Figure 1

As is typical of List implementations, we can have duplicate elements in
our ArrayList and we can go from element to element in the same order
as they were inserted. As the name implies, ArrayList is based on an
array data structure. Therefore, ArrayList provides fast access, but slow
element insertion and removal at arbitrary positions, as changes to it
require reorganizing the entire list. Fast access, however, is crucial for
most applications, which is why ArrayList is the most commonly used
collection. To store data that changes frequently, a better alternative could
be a LinkedList, for example. However, keep in mind that performance
must be tested - never do premature optimization.

Size and Capacity

There are two different terms which are important to understand in the

186

http://wiki.c2.com/?PrematureOptimization

Java for Passionate Developers

context of an ArrayList: size and capacity.

Size refers to the number of elements the ArrayList currently holds. For
every element added to or removed from the list, the size grows and
shrinks by one respectively.

Capacity, on the other hand, refers to the number of elements that the
underlying array can hold. An ArrayList starts with an initial capacity
which grows incrementally. Every time that adding an element would
exceed the capacity of the array, the ArrayList copies data over to a
new array that is about fifty percent larger than the previous one. Let’s say
you want to add 100 elements to an ArrayList with an initial capacity of
10. After all the elements have been added, it will have created six more
arrays to take the place of the first. More specifically, the first array is
replaced with a new array that can hold 15 elements, then a second one
which can hold 22 elements, then arrays with capacities of 33, 49, 73 and
finally, 109 elements – all of this to hold the growing list as pictured in
Figure 2 below:

187

Java for Passionate Developers

ArrayList Capacity

...10

...15

...22

...33

...49

...73

...109

Figure 2

These restructuring arrangements may negatively impact performance.
You can instantly create an array of the correct length to minimize these
rearrangements by defining the correct capacity at instantiation. If you
don’t know the final size of the ArrayList before creating it, then make
the best guess possible. Choosing a capacity that is too large or too small
can backfire, so choose this value carefully. In addition, it is advisable to
explicitly set the capacity at creation time as this documents your
intentions. For most projects, you won’t have to worry about optimizing
performance, but that doesn’t excuse sloppy design and poor
implementation.

Example 1 below shows a very simplified excerpt of the class ArrayList.

188

Java for Passionate Developers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package java.util;

public class ArrayList<E> {
 private static final int DEFAULT_CAPACITY = 10;
 private Object[] elementData;
 private int size;

 public E get(int index) {
 /* implementation omitted ... */
 }

 public boolean add(E e) {
 /* implementation omitted ... */
 }

 /* other methods omitted ... */
}

Example 1

DEFAULT_CAPACITY represents the initial length of the array when you
don’t specify it as recommended before. elementData represents the
array used to store the elements of the ArrayList. size represents the
number of elements the ArrayList currently holds. get, add and
remove are a few of the methods ArrayList provides.

Note:
After reading this chapter, I recommend that you take a look at the full
source code of ArrayList on grepcode.com. Alternatively, you can
find the archived source code as "src.zip" in the subdirectory
./lib/ of your JDK. Finally, you can also browse the source code in
the JDK in your IDE of choice.

I'm emphasizing this because I really want to encourage you to take a
look at the actual Java source code from time to time. It gives you a
much deeper understanding of how certain classes work! Don't be
afraid, the JDK code won't bite you! Go for it!

189

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java?av=f
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java?av=f
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java?av=f

Java for Passionate Developers

ArrayList’s Methods

In the following section, we look at some of the most common methods of
the interfaces java.util.Collection and java.util.List. Both
are implemented by the class ArrayList. In contrast to List,
Collection does not provide any index or order-related methods. This is
because the Collection interface does not guarantee any particular
ordering of its elements.

java.util.Collection

boolean add(E e)

The method add appends the element to the end of the collection. For
ArrayList, the end of the list refers to the next empty cell of the
underlying array.

boolean addAll(Collection<? extends E> c)
Appends all given elements to the end of the Collection. The stuff in
the angle brackets is related to generics. In short, it ensures that no one
can call such a method with the wrong arguments.

boolean remove(Object o)

Removes the first occurrence of the element you specify from the
Collection.

boolean removeAll(Collection<?> c)

Removes the given elements from the Collection.

Iterator iterator(E e)

Returns an object you usually use in a loop to go through a Collection
one element at a time, from one element to the next. We say “we iterate
over the Collection”, hence the name, iterator.

int size()

This method returns the current number of elements in the Collection.

190

Java for Passionate Developers

boolean contains(Object o)

Returns true if the Collection contains at least one instance of the
element you specify.

void clear()

Removes all elements from the Collection.

boolean isEmpty()

Returns true if the Collection contains no elements.

T[] toArray(T[] a)

Returns a raw array containing all of the elements of the Collection.

java.util.List

boolean add(int index, E element)

This method acts like an insertion method. It allows you to insert an
element at any index position in the list, instead of just adding the element
to the end of the list. In the process, the elements of the backing array for
ArrayList will be shifted to the right and migrated to a larger array if
necessary.

E remove(int index)

Removes an element from any index position of the list. Similar to
ArrayList’s add method, it might require shifting the remaining
elements of the underlying array to the left.

E get(int index)

Returns, but does not remove, an element from any given position in the
list.

int indexOf(Object o)

Returns the index of the first occurrence of the given argument in the list or
-1 if the argument is not found.

191

Java for Passionate Developers

int lastIndexOf(Object o)

Returns the index of the last occurrence of the given argument in the list or
-1 if the argument is not found.

void sort(Comparator<? super E> c)

This method sorts the list following the order of the given comparator.

Note that the methods described above are somewhat similar to the
Collection methods that we looked at previously. They differ in that
they require an ordering of the elements in the list.

Instantiating an ArrayList

Next, we will look at how best to instantiate an ArrayList. There is no
magic involved; we simply have to create an instance of an ArrayList
and assign it to a variable to access the object. As you can see in Example
2 below, I assign an ArrayList instance to a variable of type
Collection instead of type ArrayList.

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

Example 2

Doing this works because ArrayList implements the interface
Collection. Why should we do this, though? Well, it makes our code
more flexible and maintainable. The less we commit ourselves to concrete
implementation details, the easier it will be to change our minds later on.
We determine the concrete instance only in one place- where it is created.
This enables us to react quickly to changing business requirements. For
example, what if there was suddenly a new requirement that we should not
be allowed to store duplicates in our elements Collection? Instead of
an ArrayList we could use a HashSet. A HashSet is not an
ArrayList, but they both implement the interface
java.util.Collection. If we were to use an ArrayList reference

192

Java for Passionate Developers

variable, we would have to change the code in many places, and that
would not only be costly but also very dangerous, because any change
would risk introducing a bug. When declaring a reference variable, you
should therefore always use the class or interface that is as specific as
necessary to meet the business requirements, but as unspecific as
possible, so that it can be adapted quickly later on if requirements change.

To quote Robert C. Martin:

“A good architecture is one that maximizes the number of decisions not
made.”

Don’t just hack down some code “because it works”. You should think
much more carefully about what you truly need. Do you need an
unordered collection of objects? Then the Collection interface should
be sufficient. Do you need the ability to access an element at a specific
position? Then you need a list.

This, by the way, is a direct application of polymorphism. Check out the
chapter on Inheritance and Polymorphism for further details.

ArrayList also has methods that are specific to the class and that are
not assigned to any interface. The method trimToSize is an example of
this. It optimizes the memory consumption of an ArrayList instance by
copying the element into an array that can hold the exact number of
elements the ArrayList currently holds. If we want to call trimToSize
in our code, we are forced to define a reference variable of type
ArrayList. As in most cases, memory optimization here comes at the
expense of maintainability. To preserve maintainability, we should only
optimize performance when there is proof that the system is not
performing well enough.

As a side note, in Example 2 above, notice on the same line of code the
use of “<>”This “diamond operator” was introduced with Java 7. Since

193

Java for Passionate Developers

we declare and instantiate elements on the same statement, the
compiler can infer that our ArrayList is typed to String. This makes
our code a bit shorter and easier to read. Last, but not least, notice the
initial capacity which is a constant previously defined as follows:
private final int INITIAL_CAPACITY = 5. We could have
simply typed 5 as our initial capacity, but we would have been writing a
"magic number", which is a primitive or object literal whose meaning is
not explained in code. This makes it much harder for the next developer
reading our code to know what the 5 actually means in this context.
Instead, we should document our intentions clearly and use a named
value.

Collection Coding Samples

Next, we will look at some examples to help us get a better grasp of what
ArrayList is all about. The first example is the Collection interface
method add shown below in Example 3 (lines 12-17). Since we've
declared elements as a Collection of String, we can only ever add
String objects to it. Although our variable is a Collection, the fact
that here we have instantiated an Arraylist allows us to duplicate
elements such as "A" and "E". Recall earlier that the constant
INITIAL_CAPACITY, set to 5, has also been set as the initial capacity for
our ArrayList.

By adding a sixth element, which is the second “E”, the ArrayList instance
will internally create a new and larger array. As we saw before, all existing
data will be copied to this new array.

Note:
The internal restructuring of ArrayList does cost performance.
Nevertheless, the underlying array structure allows the fastest possible
iteration and random access times. In most cases, this outweighs the
time spent performing occasional restructurings. ArrayList is the best

194

Java for Passionate Developers

general-purpose List implementation in the Java Collections
Framework. In the few cases where it is not the optimal choice and
testing reveals that the underlying static array data structure poses a
problem for a program that dynamically adds and/or removes many
elements from a list, consider using a LinkedList instead.

10

11
12
13
14
15
16
17

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");
elements.add("E");
elements.add("E"); /* a new, larger backing array is

created here. */

Example 3

Printing a Collection

Here are two different ways to print out an ArrayList. We can use its
toString method, which println internally calls when we use it as
follows:

System.out.println(elements);

Output:
[A, B, A, C, E, E]

Example 4

As an alternative, we can use the ArrayList in a for-each loop and print
out each element separately.

195

Java for Passionate Developers

10
11
12
13

for (String element : elements) {
 System.out.print(element + " ");
}

Output:
A B A C E E

Example 5

Because ArrayList implements Collection, which extends
Iterable, we can iterate over it using a for-each loop without worrying
about the details required to iterate over the Collection. This is all done
for us internally by the compiler.

Notice that the Collection is printed out in the same order as the
elements were added, “A B A C E E” in our case. If our Collection
had been instantiated to some instance of Set, we would not have been
guaranteed the same iteration order as is the case with List.

Removing a Collection Element

We can just as easily remove elements from a Collection. As
mentioned earlier, the Collection interface does not provide any index
based methods. So to remove an element from a Collection, we
specify the value to be removed. The collection, an instance of
ArrayList in our case, then searches through each of its elements for a
match to the value specified, determined by calling the equals method.
But what happens if the collection contains the element searched for
several times? Will the first, the last or maybe all of them be removed?
Whenever you come across such a question, you could look for the
answer in a book, a video tutorial, or the API. However, the quickest way
to be sure is to write some simple test code by yourself. Code never lies. A
code experiment will always give you a reliable answer that is beyond any
doubt. In Example 6 below we will try this out:

196

Java for Passionate Developers

10

11
12
13
14
15

21
22
23

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

elements.add("A");
elements.add("B");
elements.add("A");
System.out.println(elements);
[...]
elements.remove("A");

System.out.println(elements);

Output:
[A, B, A]
[B, A]

Example 6

First, we create a collection and add the elements “A”, “B” and “A” again.
The output of Line 15 shows us that our collection now contains the
element “A” twice. In line 21 we call remove("A") on the Collection
instance. The output of line 23 shows us that the first "A" element has
been removed. The second "A" element is still included. So this answers
our question. The remove method does indeed remove from the
Collection the first match that's found.

For more details on how exactly the equals method works, check out my
blog post about equals and hashcode.

Determining a Collection’s Size

The Collection interface also provides a method to check its current
size, which can also be used to check if the collection is empty, that is, if
its size is zero. In Example 7, Line 12 below, we print out the size of our
Collection after instantiating it. As expected, 0 is printed out since we
have zero elements. On Line 19, after adding four strings, we print out the
size again and get 4.

197

https://marcus-biel.com/hashcode-and-equals/

Java for Passionate Developers

10

11
12
13
14
15
16
17
18
19

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

System.out.println(elements.size());

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");

System.out.println(elements.size());

Output:
0
4

Example 7

Conveniently, Collection also provides a method to directly check if it is
empty. We get true on Example 8, Line 12 after creating a new, empty
ArrayList and get false on Line 16 after having added “A” to the list.

10

11
12
13
14
15
16

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

System.out.println(elements.isEmpty());

elements.add("A");

System.out.println(elements.isEmpty());

Output:
true
false

Example 8

198

Java for Passionate Developers

Clearing a Collection

To remove all the elements from a Collection, we use the clear
method. This will empty the collection so that if we call isEmpty on a list
with elements, true is returned. This is demonstrated in the code excerpt
in Example 9 below. Interestingly enough, on Line 22, we learn that
printing out an empty collection doesn’t throw an Exception. Instead, it only
prints out a pair of square brackets, “[]”. Writing a little code experiment
helped us once again to gain practical knowledge of the ArrayList
class.

10

11
12
13
14
15
16
17
18
19
20
21
22

Collection<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");

System.out.println(elements.isEmpty());

elements.clear();

System.out.println(elements.isEmpty());
System.out.println(elements);

Output:
false
true
[]

Example 9

199

Java for Passionate Developers

List Coding Samples

From here on, we switch over to the List interface in most of our
examples, i.e. we will now have a reference variable of type List, giving
us access to all of the Collection interface’s methods and List’s on
top of that.

Inserting a List Element

We can insert an element by specifying where to place it using an index.
Example 10, Lines 16-17 shows how we can add, say, “T”, to the start of
our list at index 0 and “S” at index 2 – which ends up being right between
“A” and “B” after inserting “T”. Both insertions shift all other elements to
the right of the specified index, whereas removing elements by index does
the opposite, shifting all other elements to the left. Printing it out as shown
on Line 19, we get the output [T, A, S, B, A, C].

10

11
12
13
14
15
16
17
18
19

List<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");
elements.add(0, "T");
elements.add(2, "S");

System.out.println(elements);

Output:
[T, A, S, B, A, C]

Example 10

200

Java for Passionate Developers

Removing a List Element by Index

Let’s say we want to remove the second element from our list. As Example
11, Line 16 shows, this can be done by calling remove with index 1. This
removes “B” from our list, leaving us with the elements [A, A, C]. Note
that although this index-based remove method can sometimes be useful, it
can easily cause unseen errors in a program, such as when an incorrect
index is passed to it.

10

11
12
13
14
15
16
17
18

List<String> elements = new
ArrayList<>(INITIAL_CAPACITY);

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");
elements.remove(1);

System.out.println(elements);

Output:
[A, A, C]

Example 11

Determining a List Element’s Index

Sometimes, you will want to ask for the index of a certain element in a
List. The List interface gives us two methods to do that – indexOf and
lastIndexOf. Since Lists allow for duplicate elements, to get the first
index of an element, we would use indexOf. If we call indexOf with
“A”, we get the first index, 0. To get the last index of “A”, we would call
lastIndexOf, which returns 2. You can see all of this in action in
Example 12 below.

201

Java for Passionate Developers

10
11
12
13
14
15
16
17
18
19

int initialCapacity = 100; /* backing array starts at
length of 100 */
List<String> elements = new
ArrayList<>(initialCapacity);

elements.add("A");
elements.add("B");
elements.add("A");
elements.add("C");

System.out.println(elements.indexOf("A"));
System.out.println(elements.lastIndexOf("A"));

Output:
0
2

Example 12

That’s all I have to say about java.util.ArrayList for now. I hope
this chapter has helped you gain a better understanding of ArrayList, its
methods and its performance characteristics.

202

Java for Passionate Developers

Chapter 25
Linked List Data Structure

Terminology

First of all, let’s have a look at the term “linked list”. Why is it called that?
To understand the term “link”, you can think of a hyperlink on a web page
that can take you from one page to the next. To understand the term "list",
think of a shopping list. It is a list of items related to one another because
you plan to buy them all. So, a linked list is a collection of related objects
with a link taking us from one item to the next.

Singly Linked Lists

Technically, every item in our singly linked list is “wrapped” in an object,
called a “node”. In Figure 1 below, you can see an example of a singly
linked list composed of four nodes that contain the numbers 23, 3, 9, and
42.

Figure 1

203

Java for Passionate Developers

Each node has a link or pointer to the next element of the list – the next
node. For every
item that we want to add to the linked list, we create a node and store the
item in it. The first item (or beginning) of the list is usually called the head
while the last item (or end of the list) is called the tail.

When you add or remove elements from the beginning or end of the list,
this will of course have an effect on which element is considered to be the
head or tail of the list. In Figure 1 above, the element 23 is its current head
and the element 42 is its current tail.

Linked list is a dynamic data structure that can hold any number of
elements, as long as enough memory is available. After the list has been
created, navigating through the list is done by calling a method like next
which follows the link from one item to the next. We call this type of linked
list a singly linked list because the links only go in one direction, from the
beginning of the list (head) to its end (tail). This means that when we
navigate to the previous element, such as from element 42 to element 9 as
in Figure 1, we have to go back to the head of the list and call the next
function on every single element until we reach the element 9. If the list
contains a lot of elements, this may take some time.

Inserting an element after the current one is relatively easy with a singly
linked list. Say we start with 9 as our current element, as you can see in
Figure 2:

Figure 2

204

Java for Passionate Developers

Now we create a new node containing the new element 17, as in Figure 3:

Figure 3

We then link the new element "17" from the current element "9", as in
Figure 4:

Figure 4

Finally, we add a link pointing from the new "17" element to the existing
"42" element, as in Figure 5:

Figure 5

With that, the element has now been inserted, as you can see in Figure 6:

205

Java for Passionate Developers

Figure 6

Inserting the same element before the current one is possible in a singly
linked list, but is usually not very efficient. It requires us to navigate to the
previous element, starting from the beginning of the list as shown before.
Removing an element from a singly linked list has the same issue – it is
possible, but is generally not efficient.

These operations become much easier when we add a second link to
each node which points to the previous one. This allows us to navigate in
both directions on the list, forwards and backwards. However, the extra
link comes at the cost of extra system resources needed to build the more
complex structure.

Whether the overhead is justified depends a lot on the use case. If
performance is an issue, then different options must be tested.

Doubly Linked List

A linked list that contains nodes that provide a link to the next and the
previous nodes is called a doubly linked list. For every element added to
a doubly linked list, we need to create two links, making doubly linked lists
somewhat more complicated than their singly linked counterparts.
Navigating both ways in a doubly linked list is easier, but it’s done at the
cost of having a more complex structure. Thanks to the two-way link
structure, adding or removing an element before or after the current
element is relatively easy. To demonstrate this, we will add an element
“17” before the current element “9”.

206

Java for Passionate Developers

Okay, let’s go step by step again. First, we create a new element “17”, as
you can see in Figure 7 below:

Figure 7

Then, we remove the backlink from element “9” to element “3” and replace
it with a backlink to the new element “17”, as in Figure 8 below:

Figure 8

Next, we add a forward link from the new Element “17” to “9”, as shown in
Figure 9:

Figure 9

207

Java for Passionate Developers

After that, we place a backlink from “17” to “3”, as in Figure 10:

Figure 10

Finally, the old link from “3” to “9” is replaced by a link from “3” to “17”, as
in Figure 11:

Figure 11

To remove an element from a doubly linked list, we follow the same steps,
but in reverse. For example, to remove the “17” element, we redirect the
link from the “3” element to “9”, and then the backlink from “9” to “7”.

Example of a Singly Linked List Implementation

Let’s look at the code in Example 1 below. It shows a singly linked list
node. The method item (lines 12-14) returns the item of the node. The
method next (lines 16-18) allows to go to the next node.

208

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

public class Node {
 private E item;
 private Node next;

 public Node(E element, Node next) {
 this.item = element;
 this.next = next;
 }

 public E item() {
 return item;
 }

 public Node next() {
 return next;
 }
}

Example 1

The code of a doubly linked list node would look very similar. It would just
have an additional reference and method to go to the previous node.

3
4
5
6
7
8
9

10

81

public class LinkedList<E> {
 private Node currentNode;
 private Node headNode;

 public E get (int index) {...}
 public boolean add (E e) {...}
 public E remove (int index) {...}

 [...]
}

Example 2

Example 2 above shows the code excerpt of a linked list. Besides the
direct link to the currentNode and the headNode, a linked list may also
provide a direct link to its tail node. This is common for a doubly linked list,

209

Java for Passionate Developers

but is also useful to have in a singly linked one. As it stands, we can't say
whether Example 2 shows a singly or a doubly linked list. Both would be
possible. It depends on the concrete node implementation used as well as
on the concrete implementation of the linked list methods, which we have
omitted here for the sake of simplicity.

Application

You can implement many other data structures on the basis of a linked list
data structure. In the following, we will take a look at which kind of linked
list (singly or doubly linked) would be better suited to implement a list,
queue, stack or double-ended queue (deque). Of course, each of these
data structures could (and, in some cases, should) be implemented in a
different way, for example, on the basis of an array. Here, however, the
main objective is to further explore the differences between singly and
doubly linked lists. If you want to know more about queues, deques and
stacks, you may want to check out the java.util.LinkedList chapter.

● Lists usually require random access to their elements. In this case,
a doubly linked list offers more flexibility, as it allows direct
traversion in both directions of any given element of the list. In a
singly linked list, on the other hand, going back to a previous
element has to be simulated by going forward (multiple times) from
the head of the list to the desired element.

● In a “first-in-first-out” (FIFO) queue, new elements are inserted at
the tail and removed from the head of the queue, so random access
is not required. This makes singly linked lists the better choice.

● A stack provides a “last-in-first-out” (LIFO) sequence of its
operations.The requirements for a stack are very simple. You never
iterate over the elements of a stack- elements are only added and
removed from the head of the stack. Therefore, you should use a
singly linked list for a stack, because its simple structure is more
than a doubly linked list.

210

Java for Passionate Developers

● A double-ended queue or “deque” is a very dynamic data structure.
It allows access, addition and removal from both ends.Since you
have to navigate all the way from the head of a singly linked list to
remove from its tail, it is more efficient to implement a deque as a
doubly linked list.

Although it is possible to implement these data structures with arrays, for
instance, the focus of this chapter is purely on linked lists. To find out how
a list might be implemented using an array, check out the previous chapter
on ArrayList.

That’s about all I have to say about the linked list data structure. In the
next chapter, we will look at the class java.util.LinkedList, which is
a concrete implementation of a doubly linked list.

211

Java for Passionate Developers

Chapter 26
java.util.LinkedList

In this chapter, I will talk about the class java.util.LinkedList. The
Java Collections Framework has two general-purpose classes for
representing lists of things, namely LinkedList and ArrayList. In the
previous chapter, we covered the linked list data structure. As the name
implies, LinkedList is internally based off a linked list.

Linked Lists and java.util.LinkedList

Linked lists and java.util.LinkedList actually represent two different
concepts. As an analogy, think of the difference between the abstract
concept of a car on paper and a real BMW.

 Figure 1

A linked list is an abstract concept of a data structure, independent of any
programming language or platform, whereas the LinkedList Java class
is a concrete implementation. Among other interfaces, LinkedList
implements java.util.List. You can have duplicates in a List and
you can go through each element in the same order as inserted.

212

Java for Passionate Developers

Differences between ArrayList and LinkedList

As was covered in a previous chapter, ArrayList and LinkedList are
similar to each other in that they both implement the java.util.List
interface, but that is where the similarity ends. First of all, ArrayList is
based on an array, while LinkedList is based on a doubly-linked list.

Figure 2

Since an ArrayList is backed by an array, which allows direct access of
each element by using its index, it provides the most efficient retrieval of
single elements. In a linked list, you have to navigate to the desired
element, potentially traversing a large number of elements to get there.

On the other hand, the removal of an element requires shifting all the
elements to the left to take up the empty space. In large lists, this can be a
time-consuming operation, especially when the element to be removed is
located at the beginning of the list.

Given those characteristics, you cannot automatically say that an
ArrayList or a LinkedList is best for a certain scenario, since it
depends on a variety of factors. For example:

1. How large will the list be?
2. How many elements will be removed?
3. Where are the elements to be removed located?
4. How many times do you need to iterate over the list?

213

Java for Passionate Developers

Also, what might be true on one day, or on one machine, might not be true
on another. So, to know for certain which type of list is best used in your
case, the performance of each must be tested.

That said, however, in the majority of use cases, ArrayList offers the
best overall performance, mainly due to its fast random access. Therefore,
my advice is to always start with an ArrayList. Should tests reveal that
its underlying static array structure is too slow for the given use case,
check if a LinkedList offers better performance.

LinkedList Implementation

1
2
3
4
5
6
7
8
9

20

package java.util;

public class LinkedList implements List, Deque {
 private Node first;
 private Node last;

 public E get(int index) {...}
 public boolean add(E e) {...}
 public E remove(int index) {...}
 [...]
}

Example 1

Example 1 is a simplified code excerpt from the
java.util.LinkedList class. As you see - the code is rather
straightforward and is not black magic.

Note:
As described more in detail in the ArrayList chapter, you should check
the actual ArrayList source code online, or by looking at the archived
source code in the ./lib/ subdirectory of your JDK. However, don’t
rely too much on source code internals as they may change at any time
if they are not defined in the Java API.

214

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java?av=f
https://docs.oracle.com/javase/9/docs/api/

Java for Passionate Developers

As you can see in Example 1 above, LinkedList implements the List,
Queue and Deque interfaces, as Deque extends Queue. Also, as you can
see, the class has functions such as get, add, or remove, to access,
insert or delete elements from the list. Finally, lines 4 and 5 of the code
excerpt above show that a LinkedList maintains references to its first
and last nodes. These references are shown as red arrows in Figure 3:

Figure 3

Every single element in a doubly-linked list has a reference to its previous
and next elements as well as a reference to an item, which has been
simplified as a number inside a yellow box in Figure 3 above.

6
7
8
9

10
11
12
13
14
15

30

public class Node {
 private E item;
 private Node previous;
 private Node next;

 public Node(E element, Node previous, Node next) {
 this.item = element;
 this.previous = previous;
 this.next = next;
 }
 [...]
}

Example 2

A code excerpt of a linked list node implementation is shown in Example 2.
It has private members for the item it holds, as well as for the previous and
the next nodes in the list. As users of the Collections class LinkedList,
we never directly access the nodes. Instead, we use the public methods
that LinkedList exposes, which operate internally on the private
Node members.

215

Java for Passionate Developers

Having already covered the methods of the List interface in a previous
chapter, we move on now to the methods of the Queue interface as
implemented by LinkedList.

Queue

From a high-level perspective, the Queue interface consists of three
simple operations: add an element to the end (tail) of the Queue, retrieve
an element from the front (head) of the Queue without removing it, and
retrieve and remove an element from the front of the Queue.

In the lifetime of a Queue, there can be special situations, like trying to
remove an element from an empty queue, or trying to add an element to a
full, limited-capacity queue.

In one business case, those situations may be normal, expected and just
how the system works. However, in another business case, they may be a
sign that something has gone wrong and may be an unexpected,
exceptional situation that needs to be addressed. To provide for both
situations, the Queue interface presents each of its operations in two
flavours, as shown in Figure 4 below.

 Throws Exception Returns Special Value

Add add offer

Retrieve element peek

Retrieve &
Remove remove poll

Figure 4

216

Java for Passionate Developers

The first blue column shows the methods that throw an Exception when a
“special situation” occurs. The second blue column shows the methods
that return a special value in those cases - either null or false.

If you try to add an element to a full Queue implementation, the add
method will throw an IllegalStateException, while offer will return
false. However, you should know that this does not apply to a
LinkedList. Like most Queue implementations, it has a virtually
unlimited capacity, by “design” it will never be full.
LinkedBlockingQueue on the other hand is a Queue implementation
with a fixed capacity. Once this has been reached, no further elements
may be added. As just described, add would throw an
IllegalStateException in this case, and offer would return false.

Next up are element and peek. Both allow you to retrieve an element
from the front of the queue without removing it. If the queue is empty,
element throws an Exception while peek returns null.

Finally, you can retrieve and remove an element from the front of the
queue. If a queue is empty, remove throws an Exception while poll
returns null.

Deque

Now we will look at some methods from the Deque interface as
implemented by LinkedList. Deque is short for “double-ended queue”,
making it a queue that can be accessed from either end. Just like a queue,
a deque allows for adding, retrieving, and retrieving and removing an
element. However, since it can be accessed from either end, the Queue
methods we saw before now exist in two variations – one for the first and
one for the last element of the deque, as shown in Figure 5.

217

Java for Passionate Developers

Add addFirst
addLast

offerFirst
offerLast

Retrieve getFirst
getLast

peekFirst
peekLast

Retrieve &
Remove

removeFirst
removeLast

pollFirst
pollLast

Figure 5

Again, let’s look at this in more detail. Just like the add method of the
Queue interface, addFirst and addLast will throw an Exception when
the Deque is full. offerFirst and offerLast will return false instead
of throwing an Exception. As before, this only applies to a Deque
implementation with a limited capacity. LinkedBlockingDeque is one
such example.

Figure 6

getFirst and getLast, as well as peekFirst and peekLast, allow
you to retrieve an element without removing it. When the Deque is empty,
getFirst and getLast will throw a NoSuchElementException, while
peekFirst and peekLast will return null in this case. Finally,
removeFirst and removeLast retrieve and remove elements from a
Deque, or throw a NoSuchElementException when the Deque is
empty, while pollFirst and pollLast return null in this case.

218

Java for Passionate Developers

Stack

A stack is a very simple data structure that can only be
accessed from the top. As an analogy, think of a stack
of books:

● push adds an element to the top of the stack,
equivalent to the addFirst method.

● peek retrieves, but does not remove an
element from the top of the stack, just like the
peekFirst method.

● pop retrieves and removes an element from the
top of the stack, as though calling the
removeFirst method.

Figure 7

The Java Collections Framework does not provide a stack interface. There
is a Stack class, but you should never use it. Stack extends Vector,
which provides suboptimal performance, as mentioned in my Java
Collections Framework Introduction.

All you need to implement a stack data structure is a way to add, retrieve,
and retrieve and remove an element from one side of a list. To simplify
this, the Deque interface directly supports the three stack methods, push,
peek and pop. Alternatively, you could also use addFirst, peekFirst
and removeFirst to implement a stack. However, you should prefer
push, peek and pop instead, as they document your intentions clearly in
code.

LinkedList Coding Samples

To round off this chapter, we will now look at some coding examples.
Please note that you have to import classes like java.util.Deque,
java.util.concurrent.LinkedBlockingQueue and
java.util.LinkedList to compile the code samples.

219

Java for Passionate Developers

add, addLast, and addFirst

As you can see in Example 3 below, we start by creating a new
LinkedList instance and assign it to a new reference variable, called
queue.

18
19
20
21
22

Queue<String> queue = new LinkedList<>();
queue.add("A");
queue.add("A");
queue.add("B");
System.out.println(queue);

Output:
[A, A, B]

Example 3

Note the use of the diamond operator, <>, introduced with Java 7. The
operator spares us the trouble of writing “String” again before the
parentheses. Using a reference variable of type Queue restricts us to the
methods of LinkedList which are defined by the Queue interface. Other
methods theoretically supported by the LinkedList instance won’t be
accessible through the Queue reference variable.

Replacing queue with a Deque reference variable, deque, gives us the
same outcome, as you can see in Example 4 below:

18
19
20
21
22

Deque<String> deque = new LinkedList<>();
deque.add("A");
deque.add("A");
deque.add("B");
System.out.println(deque);

Output:
[A, A, B]

Example 4

220

Java for Passionate Developers

Since the Deque extends Queue, all Queue methods can also be used.

LinkedList also implements the Collection and List interfaces,
whose methods aren’t covered in this chapter. If you wish to know more
about those interfaces and their methods, see the ArrayList chapter.

As we’re using a Deque reference variable, we get to use addLast to
add elements to the end of deque. Example 5 below demonstrates this:

18
19
20
21
22

Deque<String> deque = new LinkedList<>();
deque.addLast("1");
deque.addLast("2");
deque.addLast("3");
System.out.println(deque);

Output:
[1, 2, 3]

Example 5

Starting over with an empty Deque, we can use addFirst to add
elements in reverse order to addLast, as Example 6 demonstrates:

18
19
20
21
22

Deque<String> deque = new LinkedList<>();
deque.addFirst("1");
deque.addFirst("2");
deque.addFirst("3");
System.out.println(deque);

Output:
[3, 2, 1]

Example 6

Example 7 shows that we can even use both addFirst and addLast in
conjunction, but this can get really confusing so we should try to avoid
doing so.

221

Java for Passionate Developers

18
19
20
21
22

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.addLast("2");
deque.addFirst("3");
System.out.println(deque);

Output:
[3, 1, 2]

Example 7

offer, offerFirst and offerLast

Comparable to the three add methods, we have the three offer
methods, which aren't much different from the add methods when it
comes to LinkedList instances. LinkedBlockingDeque, however, is
a Deque implementation that allows us to set a maximum number of
elements in the deque. Trying to add another element to a full
LinkedBlockingDeque is a situation that results in the special behavior
explained earlier. The offer, offerFirst and offerLast methods will
refuse to add the element and will return false in this case. Example 8
below illustrates this:

18
19
20
21
22
23

Deque<String> deque = new LinkedBlockingDeque<>(2);
deque.offer("1");
deque.offerFirst("2");
boolean wasAdded = deque.offerLast("3");
System.out.println(wasAdded);
System.out.println(deque);

Output:
false
[2, 1]

Example 8

The add, addFirst and addLast method in this case will also refuse to
add the element, but will throw an IllegalStateException instead, as
you can see in Example 9 below:

222

Java for Passionate Developers

18
19
20
21

Deque<String> deque = new LinkedBlockingDeque<>(2);
deque.offer("1");
deque.offerFirst("2");
deque.add("3");

Output:
java.lang.IllegalStateException: Deque full

Example 9

element

element allows to retrieve an element from the front of a Deque or
Queue without removing it. Example 10 below illustrates this:

18
19
20
21
22
23
24

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.add("2");
deque.add("3");
String element = deque.element();
System.out.println(element);
System.out.println(deque);

Output:
1
[1, 2, 3]

Example 10

getFirst and getLast

To retrieve an element from the front of a Deque without removing it, we
can also use getFirst. It works exactly the same as the element
method in our last example, as we can see in Example 11 below:

223

Java for Passionate Developers

18
19
20
21
22
23
24

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.add("2");
deque.add("3");
String first = deque.getFirst();
System.out.println(first);
System.out.println(deque);

Output:
1
[1, 2, 3]

Example 11

Similarly, getLast allows us to retrieve an element from the back of a
Deque, without removing it. See Example 12 below:

18
19
20
21
22
23
24

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.add("2");
deque.add("3");
String last = deque.getLast();
System.out.println(last);
System.out.println(deque);

Output:
3
[1, 2, 3]

Example 12

peekFirst and peekLast

Example 13 below shows how peekFirst and peekLast work
identically to getFirst and getLast, except when used on an empty
Queue or Deque.

224

Java for Passionate Developers

18
19
20
21

Deque<String> deque = new LinkedList<>();
String first = deque.peekFirst();
System.out.println(first);
System.out.println(deque);

Output:
null
[]

Example 13

18
19
20
21

Deque<String> deque = new LinkedList<>();
String last = deque.peekLast();
System.out.println(last);
System.out.println(deque);

Output:
null
[]

Example 14

Calling the methods element, getFirst or getLast on an empty
Deque causes a NoSuchElementException to be thrown. Examples
15-17 below demonstrate this:

18
19

Deque<String> deque = new LinkedList<>();
String element = deque.element();

Output:
java.util.NoSuchElementException

Example 15

18
19

Deque<String> deque = new LinkedList<>();
String element = deque.getFirst();

Output:
java.util.NoSuchElementException

Example 16

225

Java for Passionate Developers

18
19

Deque<String> deque = new LinkedList<>();
String element = deque.getLast();

Output:
java.util.NoSuchElementException

Example 17

Removing from Deques and Queues

remove allows us to retrieve and remove an element from the front of a
Deque or Queue. This can also be done using removeFirst on a
Deque. Similarly, removeLast retrieves and removes an element from
the back of a Deque. See Example 18 below:

18
19
20
21
22
23
24
25
26
27
28
29
30

Deque<String> deque = new LinkedList<>();
deque.add("1");
deque.add("2");
deque.add("3");

String first = deque.removeFirst();
System.out.println(deque);

String last = deque.removeLast();
System.out.println(deque);

String element = deque.remove();
System.out.println(deque);

Output:
[2, 3]
[2]
[]

Example 18

226

Java for Passionate Developers

Calling remove, removeFirst or removeLast on an empty Queue or
Deque will throw a NoSuchElementException. Example 19 below
demonstrates this:

18
19

Deque<String> deque = new LinkedList<>();
deque.remove();

Output:
java.util.NoSuchElementException

Example 19

The poll methods work in a similar way to the remove methods.
However, when you call poll, pollFirst or pollLast on an empty
Deque, the methods will return null instead of throwing an exception.
Example 20 below illustrates this.

18
19
20
21

Deque<String> deque = new LinkedList<>();
System.out.println(deque.poll());
System.out.println(deque.pollFirst());
System.out.println(deque.pollLast());

Output:
null
null
null

Example 20

Using a LinkedList as a Stack

Example 21 below shows us how we can use a LinkedList as a stack.
To add an element to a stack, we call the method push. A stack is a
so-called “last in, first out” data structure. When we add “redbook” and
then “brownbook” to our stack, we can think of the brown book as being
on top of the red one. In line 22, peek retrieves but does not remove
"brownbook" as the top element. In lines 24-27, we pop elements off the
stack one by one. In line 28, we call peek on a now empty stack, which

227

Java for Passionate Developers

returns null. Finally, line 29 demonstrates that calling pop on an empty
stack throws a NoSuchElementException.

18
19
20
21
22
23
24
25
26
27
28
29

Deque<String> stack = new LinkedList<>();
stack.push("redBook");
stack.push("brownBook");
System.out.println("stack:" + stack);
System.out.println(stack.peek());
System.out.println("stack:" + stack);
System.out.println(stack.pop());
System.out.println("stack:" + stack);
System.out.println(stack.pop());
System.out.println("stack:" + stack);
System.out.println(stack.peek());
System.out.println(stack.pop());

Output:
stack:[brownBook, redBook]
brownBook
stack:[brownBook, redBook]
brownBook
stack:[redBook]
redBook
stack:[]
java.util.NoSuchElementException

Example 21

And that’s it: all you need to know about java.util.LinkedList and
how it can be used as a Queue, Deque or a stack.

228

Java for Passionate Developers

Chapter 27
Object Identity vs Equality

Object Identity

When we create objects in Java, the computer stores them in its memory.
To be able to locate an object, the computer assigns it an address in the
memory. Every new object we create gets a new address. If this yellow
area represents an area of the computer’s memory, the blue area
represents our object being stored in the memory at some address.

Example 1

To illustrate this feature, let us imagine the building featured in Example 2
below. If we are looking at the building, we might be wondering if it is the
White House or just another white house object. To check, we can
compare this object’s unique address to the White House’s address. We
would check our object’s identity using ‘==’, the equals operator. Hopefully
the address of that house is “1600 Pennsylvania Avenue North West,

229

Java for Passionate Developers

Washington DC”, otherwise we’re looking at a different white house object,
and the president isn’t waiting inside to meet us.

Example 2

Now, let’s declare three variables and discuss their memory locations:

9
10
11

Car myCar1 = new Car("blue");
Car myCar2 = myCar1;
Car myCar3 = new Car("blue");

Example 3

In Example 3 we have reference variables myCar1, myCar2 and myCar3.
myCar1 was assigned a new Car object, as was myCar3, but myCar2
was assigned the value of myCar1. This difference is key. myCar2 is not a
new object. It is simply a second reference variable ‘pointing’ to the same
object in the memory. So while we have three variables that we created,
we actually have only placed two objects in the memory (Example 4).

230

Java for Passionate Developers

Example 4

Now, let’s take these reference variables and compare them using the
equals operator, ‘==’. When we use the equals operator, we can see if
both variables refer to the same object in the memory. Take a look at the
three ‘if’ statements below:

13
14
15
16
17
18

if(myCar1 == myCar1) { /* true */
}
if(myCar1 == myCar2) { /* true */
}
if(myCar1 == myCar3) { /* false */
}

Example 5

When we compare myCar1 to itself, it evaluates to true, because they
are referring to the same object in the memory. Similarly, myCar1 ==
myCar2 evaluates to true as well. Again, although they are different
reference variables, they are referencing the same object in the memory.
Finally, myCar1 == myCar3 evaluates to false, because they are
pointing to different objects in the memory.

231

Java for Passionate Developers

Object Equality

Another way that one can test equality is by using the equals() method.
The equals method tells us if two objects are considered equal. Let us
suppose that our program requires that two cars are ‘equal’ if they are of
the same color. So let’s look at the same three ‘if’ statements:

22
23
24
25
26
27

if(myCar1.equals(myCar1)) { /* true */
}
if(myCar1.equals(myCar2)) { /* true */
}
if(myCar1.equals(myCar3) { /* false */
}

Example 6

Based on what you’ve read so far, you’d think that all three statements
would evaluate to true. However, that is not how the default equals()
method works. If you look at the default equals() method of the Object
class, it actually calls ‘==’, giving it the same functionality as simply saying
obj1 == obj2.

148
149
150

public boolean equals(Object obj) {
 return (this == obj);
}

Example 7

Obviously, this isn’t what we want. In our example, we want to judge if two
Cars are equal based on their color. So, we will have to override the
equals() method:

232

Java for Passionate Developers

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

@Override
public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 Car other = (Car) obj;
 return this.color.equals(other.color);
}

@Override
public int hashCode() {
 return color.hashCode();
}

Example 8

Now, we are expressing in code what we consider equal or unequal.
Again, this totally depends on what our client considers equal or unequal.
We have to override these methods not because the creators of Java
thought that it would be a good idea, but because there wasn’t any other
option. When they wrote the object class, they didn’t really have in mind
our car class and the specific way in which we would compare them, so
they came up with a generic method that they welcome us to change. You
might also notice that I didn’t just overwrite the equals() method. I also
overrode the hashCode() method. Java specifies that equal objects
must have equal hashCodes as well. For more detail on why we have to
override both methods, check out my blog post about equals and
hashcode.

233

https://marcus-biel.com/hashcode-and-equals/
https://marcus-biel.com/hashcode-and-equals/

Java for Passionate Developers

Chapter 28
The Java Comparable Interface

How should we compare and sort things? Now that might seem like a
weird question, but I want you to really think about it. Let’s say we have a
set of apples:

Example 1

How do we want to sort them? Do we want to sort them by weight? If so,
are we sorting them from lightest to heaviest or heaviest to lightest? When
we are sorting them, we need to repeatedly compare two apple’s weights
until all the apples are in the correct order. Is apple 1 heavier than apple
2? Is it heavier than apple 3? We need to keep doing that until the list is
sorted. The comparable interface helps us accomplish this goal.
Comparable can’t sort the objects on its own, but the interface defines a
method int compareTo(T).

How compareTo() Works

Let’s begin by utilizing the compareTo() method to see which apples are
heavier.

234

Java for Passionate Developers

Example 2

The compareTo() method works by returning an int value that is either
positive, negative, or zero. It compares the object by making the call to the
object that is the argument. A negative number means that the object
making the call is “less” than the argument.If we were comparing the
apples by size, the above call would return a negative number, say -400,
because the red apple is smaller than the green apple. If the two apples
were of equal weight, the call would return 0. If the red apple was heavier,
compareTo() would return a positive number, say 68.

The Flexibility of compareTo()

If we called the compareTo() method above repeatedly, we could sort
our apples by size, which is great, but that’s not the end of the story. What
if we want to sort apples by color? Or weight? We could do that too. The
key is that our client, let’s call him Fatty Farmer, (see Example 3), needs to
precisely define how the apples need to be sorted before we can start
development.

235

Java for Passionate Developers

Example 3

He can do this by answering these two questions:

1. How does he want the apples to be sorted? What is the
characteristic he would like us to compare?

2. What does ‘less than’, ‘equal to’, and ‘greater than’ mean in that
context?

It’s also possible to use multiple characteristics, as we’ll see a little bit
later.

Example 1: Sorting Apples by Weight

For our first example, we’re going to sort our apples by weight. It only
requires one line of code.

Collections.sort(apples);
Example 4

The above line of code can do all the sorting for us, as long as we’ve
defined how to sort the apples in advance (That’s where we’ll need more
than one line).

Let’s begin by writing the Apple class.

236

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

public class Apple implements Comparable {
 private String variety;
 private Color color;
 private int weight;

 @Override
 public int compareTo(Apple other) {
 if (this.weight < other.weight) {
 return -1;
 }
 if (this.weight == other.weight) {
 return 0;
 }
 return 1;
 }
}

Example 5

This is our first version of class Apple. Since we are using the
compareTo method and sorting the apples, I implemented the
Comparable interface. In this first version, we’re comparing objects by
their weight. In our compareTo() method we write an if condition that
says if the apple’s weight is less than the other apple, return a negative
number, to keep it simple, we’ll say -1. Remember, this means that this
apple is lighter than apple other. In our second if statement, we say that
if the apples are of equal weight, return a 0. Now if this apple isn’t lighter,
and it isn’t the same weight, then it must be greater than the other apple.
In this case we return a positive number, say, 1.

Example 2: Sorting Apples by Multiple
Characteristics

As I mentioned before, we can also utilize compareTo() to compare
multiple characteristics. Let’s say we want to first sort apples by variety,
but if two apples are of the same variety, we should sort them by color.
Finally, if both of these characteristics are the same, we will sort by weight.

237

Java for Passionate Developers

While we could do this by hand, in full, like I did in the last example, we
can actually do this in a much cleaner fashion. Generally, it is better to
reuse existing code than to write our own. We can use the compareTo
methods in the Integer, String, and enum classes to compare our
values. Since we aren’t using Integer objects, rather we are using ints we
have to use a static helper method from the Integer wrapper class to
compare the two values.

3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

public class Apple implements Comparable<Apple> {
 private String variety;
 private Color color;
 private int weight;

 @Override
 public int compareTo(Apple other) {
 int result = this.variety.compareTo(other

.variety);
 if (result != 0) {
 return result;
 }
 if (result == 0) {
 result = this.color.compareTo(other.color);
 }
 if (result != 0) {
 return result;
 }
 if (result == 0) {
 result = Integer.compare(this.weight, other

.weight);
 }
 return result;
 }
}

Example 6

In Example 6, we compare the first quality of the apples that our client
prioritized, their variety. If the result of that compareTo() call is non-zero,
we return the value. Otherwise we make another call until we get a

238

Java for Passionate Developers

non-zero value, or we’ve compared all three characteristics. While this
code works, it isn’t the most efficient or clean solution. In Example 3, we
refactor our code to make it even simpler.

6
7
8
9

10
11
12
13

14
15
16

@Override
public int compareTo(Apple other) {
 int result = this.variety.compareTo(other.variety);
 if (result == 0) {
 result = this.color.compareTo(other.color);
 }
 if (result == 0) {
 result = Integer.compare(this.weight, other

.weight);
 }
 return result;
}

Example 7

As you can see, this greatly shortens our code and allows us to make
each comparison in only one line. If the result of a compareTo() call is
zero, we just move on to the next “round” of comparisons within the same
if statement. This, by the way, is a good example of what you do as a
Clean Coder. Usually, you don’t instantly write Clean Code; you start with
a rough idea, make it work, and then continuously improve it until you’ve
made it as clean as you can.

Comparable, hashCode, and equals

You may notice that the compareTo() looks a little bit like the
hashCode() and equals() methods. There is one important difference,
however. For hashCode() and equals(), the order in which you
compare individual attributes does not influence the value returned,
however in compareTo() the order of the objects is defined by the order
in which you compare the objects.

239

Java for Passionate Developers

Conclusion

To conclude I just want to underscore how important the Comparable
interface is. It is used in both the java.util.Arrays and the
java.util.Collections utility classes to sort elements and search for
elements within sorted collections. With collections like TreeSet and
TreeMap, it’s even easier - they automatically sort their elements which
have to implement the Comparable interface.

240

Java for Passionate Developers

Part 4
Advanced
Concepts

241

Java for Passionate Developers

Chapter 29
Shallow vs Deep Copy

To begin, I’d like to highlight what a copy in Java is. First, let’s differentiate
between a reference copy and an object copy. A reference copy, as the
name implies, creates a copy of a reference variable pointing to an object.
If we have a Car object, with a myCar variable pointing to it and we make
a reference copy, we will now have two myCar variables, but still one
object.

Example 1

An object copy creates a copy of the object itself. So if we again copied
our car object, we would create a copy of the object itself, as well as a
second reference variable referencing that copied object.

242

Java for Passionate Developers

Example 2

What is an Object?

Both a Deep Copy and a Shallow Copy are types of object copies, but
what really is an object? Often, when we talk about an object, we speak of
it as a single unit that can't be broken down further, like a humble coffee
bean. However, that's oversimplified.

Example 3

243

Java for Passionate Developers

Say we have a Person object. Our Person object is in fact composed of
other objects, as you can see in Example 4. Our Person contains a Name
object and an Address object. The Name in turn, contains a FirstName
and a LastName object; the Address object is composed of a Street
object and a City object. So when I talk about Person in this chapter, I’m
actually talking about this entire network of objects.

Example 4

So why would we want to copy this Person object? An object copy,
usually called a clone, is created if we want to modify or move an object,
while still preserving the original object. There are many different ways to
copy an object that you can learn about in another chapter. In this chapter
we’ll specifically be using a copy constructor to create our copies.

Shallow Copy
First let’s talk about the shallow copy. A shallow copy of an object copies
the ‘main’ object, but doesn’t copy the inner objects. The ‘inner objects’ are
shared between the original object and its copy. For example, in our
Person object, we would create a second Person, but both objects would
share the same Name and Address objects.

244

Java for Passionate Developers

Let’s look at a coding example. In Example 5, we have our class Person,
which contains a Name and Address object. The copy constructor takes
the originalPerson object and copies its reference variables.

7
8
9

10
11
12
13
14

45

public class Person {
 private Name name;
 private Address address;

 public Person(Person originalPerson) {
 this.name = originalPerson.name;
 this.address = originalPerson.address;
 }
 [...]
}

Example 5

The problem with the shallow copy is that the two objects are not
independent. If you modify the Name object of one Person, the change
will be reflected in the other Person object.

Let’s apply this to an example. Say we have a Person object with a
reference variable mother; then, we make a copy of mother, creating a
second Person object, son. If later on in the code, the son tries to
moveOut() by modifying his Address object, the mother moves with
him!

63

65

69

Person mother = new Person(new Name(...), new
Address(...));

[...]
Person son = new Person(mother);
[...]
son.moveOut(new Street(...), new City(...));

Example 6

245

Java for Passionate Developers

This occurs because our mother and son objects share the same
Address object, as you can see illustrated in Example 7. When we
change the Address in one object, it changes in both!

 Example 7

Deep Copy
Unlike the shallow copy, a deep copy is a fully independent copy of an
object. If we copied our Person object, we would copy the entire object
structure.

 Example 8

A change in the Address object of one Person wouldn’t be reflected in
the other object as you can see by the diagram in Example 8. If we take a

246

Java for Passionate Developers

look at the code in example 9, you can see that we’re not only using a
copy constructor on our Person object, but we are also utilizing copy
constructors on the inner objects as well.

8
9

10
11
12
13
14

15

46

public class Person {
 private Name name;
 private Address address;

 public Person(Person otherPerson) {
 this.name = new Name(otherPerson.name);
 this.address = new Address(otherPerson

.address);
 }
 [...]
}

Example 9

Using this deep copy, we can retry the mother-son example from Example
6. Now the son is able to successfully move out!

However, that’s not the end of the story. To create a true deep copy, we
need to keep copying all of the Person object’s nested elements, until
there are only primitive types and “Immutables” left. Let’s look at the Street
class to better illustrate this:

7
8
9

10
11
12
13
14

34

public class Street {
 private String name;
 private int number;

 public Street(Street otherStreet) {
 this.name = otherStreet.name;
 this.number = otherStreet.number;
 }
 [...]
}

Example 10

247

Java for Passionate Developers

The Street object is composed of two instance variables - String name
and int number. int number is a primitive value and not an object. It’s
just a simple value that can’t be shared, so by creating a second instance
variable, we are automatically creating an independent copy. String is
an Immutable. In short, an Immutable is an Object, that, once created, can
never be changed again. Therefore, you can share it without having to
create a deep copy of it.

Conclusion
To conclude, I’d like to talk about some coding techniques we used in our
mother-son example. Just because a deep copy will let you change the
internal details of an object, such as the Address object, it doesn’t mean
that you should. Doing so would decrease code quality, as it would
make the Person class more fragile to changes - whenever the Address
class is changed, you will have to (potentially) apply changes to the
Person class also. For example, if the Address class no longer contains
a Street object, we’d have to change the moveOut() method in the
Person class on top of the changes we already made to the Address
class.

In Example 6 of this chapter I only chose to use a new Street and City
object to better illustrate the difference between a shallow and a deep
copy. Instead, I would recommend that you assign a new Address object
instead, effectively converting to a hybrid of a shallow and a deep copy,
as you can see in Example 10:

63

65

69

Person mother = new Person(new Name(...), new
Address(...));

[...]
Person son = new Person(mother);
[...]
son.moveOut(new Address(...));

Example 10

248

Java for Passionate Developers

In object-oriented terms, this violates encapsulation, and therefore should
be avoided. Encapsulation is one of the most important aspects of
Object Oriented programming. In this case, I had violated encapsulation
by accessing the internal details of the Address object in our Person
class. This harms our code because we have now entangled the Person
class in the Address class and if we make changes to the Address class
down the line, it could harm the Person class as I explained above. While
you obviously need to interconnect your various classes to have a coding
project, whenever you connect two classes, you need to analyze the costs
and benefits.

249

Java for Passionate Developers

Chapter 30
Immutable Classes

In this chapter, I will be discussing immutable classes in Java. The concept
of immutability has always been important in all programming languages,
including Java. With the release of Java 8 however, immutable classes
have become even more important. This version introduced a new
java.time API, which is based entirely on immutable classes.

What is an Immutable Class?

An immutable class is a class whose instances cannot be modified.
Information stored in an immutable object is provided when the object is
created, and after that it is unchangeable and read-only forever. As we
can’t modify immutable objects, we need to work around this. For instance,
if we had a spaceship class, and we wanted it to fly somewhere, we’d have
to return a new object with modified information.

17
18
19

public Spaceship flyTo(Destination destination) {
 return new Spaceship(name, destination);
}

Example 1

Advantages of Immutable Classes

At first glance, you'd think that immutable classes aren't very useful, but
they do have many advantages.

250

Java for Passionate Developers

1. Immutable objects are stable

Firstly, immutable classes greatly reduce the effort needed to implement a
stable system. The property of immutable objects that prevents them from
being changed is extremely beneficial when creating this kind of system.
For example, imagine that we are making a BankAccount class for a
large bank. After the financial crisis, the bank won't allow its users to have
a negative BankAccount balance.

Figure 1

So, they institute a new rule and add a validation method to throw an
IllegalArgumentException whenever a function call results in a
negative balance. This type of rule is called an invariant.

251

Java for Passionate Developers

3

10
11
12

13
14
15
16

public class BankAccount{
 [...]
 private void validate(long balance) {
 if (balance < 0) {
 throw new IllegalArgumentException(

"balance must not be negative:"+ balance);
 }
 }
}

Example 2

In a typical class, this validate() method would be called anytime a
user’s balance is changed. If the user makes a withdrawal or transfers
money out of his account, we would have to call the validate method.
However, with an immutable class, we only have to call the validate
method once, in the class constructor, as in line 6 in Example 3 below.

5
6
7
8

public BankAccount(long balance) {
 validate(balance);
 this.balance = balance;
}

Example 3
For every distinct state, a new object will be created. Whenever a new
object is created, its constructor will call the validate method again. This is
extremely useful. Once the invariants have been established in the
constructor, they will remain true for the entire lifetime of the object.

2. Immutable objects are fault tolerant

Similarly, immutable classes can be used to support a fault tolerant
system. Imagine that someone tries to withdraw money from a bank, but
between the time that their money is withdrawn from the account and the
money is released from the ATM, there is a technical error. In a mutable
class, it would be difficult to ensure that the person’s money isn’t lost

252

Java for Passionate Developers

forever. In an immutable class, though, you could for instance throw an
IllegalArgumentException, preventing the account from losing
money before the user physically receives it.

15
16
17
18
19
20
21

public ImmutableAccount withdraw(long amount) {
 long newBalance = newBalance(amount);
 return new ImmutableAccount(newBalance);
}
private long newBalance(long amount) {
 /* exception during balance calculation */
}

Example 4

An immutable object can never get into an inconsistent state, even in the
case of an exception. This removes the threat of an unforeseen error
destabilizing the entire system. Apart from the cost of the initial validation,
this stability comes at no cost.

3. Immutable objects can be shared freely

In Example 5 below, you can see two distinct Account objects sharing the
same Balance instance:

Example 5

253

Java for Passionate Developers

If Balance is an immutable object, then we can change the balance in one
of the accounts and the "change" will return a different instance instead.
Example 6 below demonstrates this:

Example 6

Therefore, immutable objects can be shared freely. Immutable objects can
even be shared freely when using a lock free algorithm in a multithreaded
environment, where multiple actions happen in parallel. As a consequence,
an immutable class should never provide a copy constructor. More
specifically, you should never create any kind of copy of an immutable
object.

4. Immutable objects work well as Map keys and Set
elements

Finally, immutable objects are also a perfect option to use as keys of a
java.util.Map or elements of a java.util.Set. The reason for this is
that when you alter Map keys or Set elements, a lookup could result in an
empty or wrong result returned later on.

254

Java for Passionate Developers

Disadvantages of Immutable Classes

The only disadvantage that immutable classes have is a potential to cause
performance problems. For every new state of an object, you need to
return a new different object. But is that really true? Imagine that we want
to create an immutable class representing a traffic light. Each time the
color of the traffic light changes, we have to return a different object.
However, instead of returning a new object each time, we could also store
(or ‘cache’) one instance of the traffic light in each color: red, yellow and
green (Example 7 below) - and whenever we wanted to change the color of
the immutable TrafficLight object, we could just switch among the
three different objects.

Example 7

This shows that we cannot automatically infer that using immutable objects
will lead to poor performance. In fact, the opposite is often the case,
especially for multithreaded systems.

Okay, for now, let’s leave it at that. At the end of the chapter, we’ll consider
cases where this disadvantage really becomes an issue, and where it is
safe to ignore.

255

Java for Passionate Developers

How to Create an Immutable Class

Now that I've shown you why immutable classes are valuable and when
you should use them, I'm going to show you how to make one. Picking up
the Spaceship idea from Example 1, let's go through the steps of
designing an immutable class. To create an immutable class, you have to
follow these four steps:

1. Make all fields private and final.
2. Don’t provide any methods that modify the object’s state.
3. Ensure that the class can’t be extended.
4. Ensure exclusive access to any mutable fields.

1. Make all attributes private and final

The first condition of an immutable class is that all its attributes must be
private and final. private, so that the attributes cannot be directly
accessed from outside the class. We make the attribute final, so that
they can also never be reassigned from within the class. Also, this clearly
communicates our intent in code to the entire development team: “These
fields must not be changed”.

Keeping things simple for now, we will start with a class that consists only
of immutable attributes. As you can see in Example 8 below, these
attributes are name and destination. The java.lang.String class is
immutable. Destination however is a “custom” class of our application,
and for now we will assume that it is immutable as well.

256

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12

13
14
15
16
17

public class Spaceship {
 private final String name;
 private final Destination destination;

 public ImmutableSpaceship(String name) {
 this.name = name;
 this.destination = Destination.NONE ;
 }

 public Spaceship(String name, Destination

destination) {
 this.name = name;
 this.destination = destination;
 }
}

Example 8

Note:
Theoretically, you could even make immutable attributes and primitive
values public final. However, this would violate the rules of good object
oriented design. An object should provide a service / behavior through
public methods and hide its internal representation, so that it can be
changed at a later time without requiring changes in other classes. This
is known as “encapsulation”.

2. Don’t provide any methods that modify the
object’s state

The next step should be already somewhat familiar to you, as we already
looked at it at the beginning of the chapter. Whenever you have a method
that would modify an object’s state, you instead have to return a different
object, as lines 22-24 in Example 9 below demonstrate.

257

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22

23

24
25

51
52

public class ImmutableSpaceship {

 private final String name;
 private final Destination destination;

 public ImmutableSpaceship(String name) {
 this.name = name;
 this.destination = Destination.NONE ;
 }

 private ImmutableSpaceship(String name, Destination

destination) {
 this.name = name;
 this.destination = destination;
 }

 public Destination currentDestination() {
 return destination;
 }

 public ImmutableSpaceship flyTo(Destination

newDestination) {
 return new ImmutableSpaceship(this.name,

newDestination);
 }

 […]
}

Example 9

In Example 10 below, we now create a direct instance of the class.

ImmutableSpaceship immutableSpaceship = new
ImmutableSpaceship();

Example 10

258

Java for Passionate Developers

This instantiates an immutable object. Nevertheless, the class is not fully
immutable yet. Should someone extend the class, it would still be possible
to violate the rules of immutability in the ImmutableSpaceship subclass.
We say “the ImmutableSpaceship class is effectively immutable”. As
long as no one extends the class, it will be immutable.

3. Ensure that the class can’t be extended

To make our class truly immutable, we also need to protect it from being
extended. If our class could be extended, then someone could override its
methods, which could modify our object. If you ever get this wrong, you are
in good company. Josh Bloch wrote the two classes BigInteger and
BigDecimal. Both were supposed to be immutable, but both can be
extended.

To illustrate why this is a problem, let’s look at the RomulanSpaceship in
Example 11 below.

3
4
5
6
7
8

9
10
11
12
13

public class RomulanSpaceship extends Spaceship {

 private Destination destination;

 @Override
 public ImmutableSpaceship flyTo(Destination

destination) {
 this.destination = destination;
 return this;
 }
}

Example 11

This class maintains its own, non-final destination field. The original
field of its superclass is private and therefore not visible within
RomulanSpaceship. Fields can generally not be overwritten. It is just a
field with the same type and name as that in the superclass. The name of

259

https://docs.oracle.com/javase/9/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Java for Passionate Developers

the field is, in principle, arbitrary. However, using the same name makes it
even more confusing and difficult for the next developer to detect the bug.
The important part is that the overriding flyTo method of
RomulanSpaceship does not return a new RomulanSpaceship
instance. Instead, it directly changes the internal state of the current object
and returns a reference to itself to the caller. Keep in mind that you may
not always be able to see the source code, as you can here. Even if you
can see it, you may not have the time to look at it in much detail. Now
assume that you are using an instance of a RomulanSpaceship that is
assigned to a reference variable of ImmutableSpaceship. A
RomulanSpaceship is an ImmutableSpaceship. Any method that
requires an ImmutableSpaceship instance can also be called with a
RomulanSpaceship instance. This could result in very hard-to-find bugs
in code that relies upon an immutable spaceship instance.

To fix this issue, we must ensure that the class can't be extended. The
simplest and most secure way of doing this is to make the class final, as
you can see in Example 12 below.

public final class Spaceship

Example 12

Note:
There are also other alternatives. For instance, you could also make all
constructors private and provide a static factory method to create an
instance of the class. This is a bit more dangerous, though, as it
documents your intention less clearly. Another developer could add
another public constructor to the class later on, and in this way violate
the immutability of the class.

Now the source code of ImmutableSpaceship looks like this:

260

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22

23

24
25

51
52

public final class ImmutableSpaceship {

 private final String name;
 private final Destination destination;

 public ImmutableSpaceship(String name) {
 this.name = name;
 this.destination = Destination.NONE ;
 }

 private ImmutableSpaceship(String name, Destination

destination) {
 this.name = name;
 this.destination = destination;
 }

 public Destination currentDestination() {
 return destination;
 }

 public ImmutableSpaceship flyTo(Destination

newDestination) {
 return new ImmutableSpaceship(this.name,

newDestination);
 }

 […]
}

Example 13

On the assumption that destination is immutable, this class is
immutable now, and we are done.

Please remember that designing your class as immutable today is no
guarantee that it will also be immutable tomorrow. Another developer who
is unaware of your intentions may later make adjustments to the class that

261

Java for Passionate Developers

will break its immutability. This is one of a few good reasons to add a
comment to your class, like this one in Example 14:

/*
 * This class is immutable.
 */
public final class Spaceship

Example 14

When I spoke about the advantages of immutable classes earlier, I
explained that immutable objects can be shared freely without having to
create a deep copy. For this reason, it is particularly easy to build an
immutable class based on immutable attributes. Besides the immutable
String attribute, our class contains a Destination attribute. Until now,
we have defined the "custom" class Destination as immutable also.
From now on, we'll assume that the Destination attribute is mutable. In
this case, we'll have to follow a fourth rule, as we'll see in the section that
follows.

4. Ensure exclusive access to mutable fields

Anyone who holds access to a mutable field can alter it, thereby mutating
the otherwise immutable object. To prevent someone from gaining access,
we should never obtain or return a direct reference to a mutable object.
Instead, we must create a deep copy of our mutable object and work with
that instead. Let's see what this means by going back to our
ImmutableSpaceship, as shown in Example 15 below:

262

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22

23

24
25

51
52

public final class ImmutableSpaceship {

 private final String name;
 private final Destination destination;

 public ImmutableSpaceship(String name) {
 this.name = name;
 this.destination = new Destination("NONE");
 }

 private ImmutableSpaceship(String name, Destination

destination) {
 this.name = name;
 this.destination = destination;
 }

 public Destination currentDestination() {
 return destination;
 }

 public ImmutableSpaceship flyTo(Destination

newDestination) {
 return new ImmutableSpaceship(this.name,

newDestination);
 }

 […]
}

Example 15

The source code is almost identical to the source code of Example 13. In
fact, the only difference is line 10, where we explicitly call a Destination
constructor. This is to clearly indicate that we are now assuming that
Destination is a mutable class. Besides, a mutable public static attribute
would be a serious design flaw.

263

Java for Passionate Developers

As a consequence, we have to ensure that no one can obtain a direct
reference to an internal Destination attribute. To achieve this, we start
by checking all public methods and constructors for any incoming or
outgoing Destination references.

The public constructor (lines 8-11) does not receive any Destination
reference. The Destination object it creates is safe, as it cannot be
accessed from outside. So the public constructor is good as it is.

In the currentDestination() method (lines 18-20), however, we
directly return the Destination reference. On the assumption that
Destination is mutable, this is a problem. To fix it, we return a deep
copy of the internal Destination object, as you can see in Example 16
below:

18
19
20

public Destination currentDestination() {
 return new Destination(destination);
}

Example 16

The last public method we have to check is flyTo (line 21-23) in
Example 17 below:

12

13
14
15
16

21
22
23

 private ImmutableSpaceship(String name, Destination
destination){

 this.name = name;
 this.destination = destination;
 }

 [...]
 public ImmutableSpaceship flyTo(Destination other) {
 return new ImmutableSpaceship(this.name, other);
 }
 [...]

Example 17

264

Java for Passionate Developers

It receives a Destination reference and directly forwards it to a
private constructor (lines 12-14). The flyTo method will return a new
object. Unfortunately, this new object will share the same reference to the
destination object given as a parameter to the flyTo method - a mutable
reference just leaked in! You might be tempted to fix the problem by
creating a deep copy of the destination parameter right in the flyTo
method. However, this would not truly fix the problem! Any other public
method, now or in future, would suffer the same consequences. As Clean
Coders, we must not allow this! The true source of the problem is the
private constructor that allows to create a new instance with a given
reference. To solve the problem, we have to create a deep copy of the
incoming destination reference right there, in the constructor, as you can
see in Example 18 below:

12

13
14
15

private ImmutableSpaceship(String name, Destination
destination) {

 this.name = name;
 this.destination = new Destination(destination);
}

Example 18

Now the final source code of ImmutableSpaceship looks like this:

265

Java for Passionate Developers

3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

26

27
28

51
52

/*
 * This class is immutable and thread-safe.
 */
public final class ImmutableSpaceship {

 private final String name;
 private final Destination destination;

 public ImmutableSpaceship(String name) {
 this.name = name;
 this.destination = new Destination("NONE");
 }

 private ImmutableSpaceship(String name, Destination

destination) {
 this.name = name;
 this.destination = new Destination(destination);
 }

 public Destination currentDestination() {
 return new Destination(destination);
 }

 public ImmutableSpaceship flyTo(Destination

newDestination) {
 return new ImmutableSpaceship(this.name,

newDestination);
 }

 […]
}

Example 19

Assuming that Destination is immutable in Example 13 and mutable in
Example 19, keep in mind that both examples are valid immutable classes.

266

Java for Passionate Developers

When to use Immutable Classes

Okay, now that we know how to create an immutable class, I want to
discuss when we should use them. In his book Effective Java, Josh Bloch
gives us a clue when he says:

“Classes should be immutable unless there’s a very good reason to
make them mutable”.

This is fully correct, but how do we know when we have a good reason to
make a class mutable? It's a hotly debated topic, and there is no golden
rule. Remember that an immutable class requires a separate object for
each distinct state. Therefore, using immutable objects tends to increase
the number of objects created. This may become taxing if the objects used
are too complex. In other words, small classes that contain few attributes
are better suited as immutable classes than complex classes that contain a
large number of attributes. We cannot automatically deduce from the
number of attributes a class has whether it should be immutable or not,
though. That'd be premature. There are many other deciding factors.

For example, it depends on the specific problem at hand (the problem
domain), its software design, the hardware it is running on, as well as the
scenario in which it is being used. A system may be used by only one
person or by a thousand people in parallel. The program could be running
on your private laptop or on a high performance server cluster. There will
be parameters that you can and cannot influence. You can’t influence your
problem or the environment, but you can influence the way you go about
designing a solution to the problem. The best you can do, is follow this
guideline:

Utilize immutable classes as much as possible. Start by making every
class immutable and facilitate their immutability by creating small classes
with few attributes and methods. Simplicity and clean code are essential.

267

https://amzn.to/2vMIZkd

Java for Passionate Developers

If you have clean code, that facilitates immutability; and if you have
immutable classes, your code is cleaner. In the majority of cases, this
approach will lead to a system that exceeds all requirements.

If testing reveals that you haven’t achieved satisfactory performance,
relax the immutability rules gradually, as a last resort. As much as
necessary, but as little as possible.

I hope you now have a better understanding of immutable classes, and can
see just how useful they are. Remember to keep your code simple and
clean, by using immutable classes to the greatest possible extent.

268

